Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2847(2024)

Polymer-Derived Ceramic Nanocomposites: From Composition and Structure Design to Catalytic Properties

ZHOU Cong1,2、*, FENG Yao2,3, and YU Zhaoju2,4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(111)

    [1] [1] COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. J Am Ceram Soc, 2010, 93(7): 1805–1837.

    [2] [2] YAJIMA S, HAYASHI J, OMORI M. Continuous silicon carbide fiber of high tensile strength[J]. Chem Lett, 1975, 4(9): 931–934.

    [3] [3] RIEDEL R, MERA G, HAUSER R, et al. Silicon-based polymer-derived ceramics: Synthesis properties and applications—a review[J]. J Ceram Soc Japan, 2006, 114(1330): 425–444.

    [4] [4] RIEDEL R, KLEEBE H J, SCH?NFELDER H, et al. A covalent micro/nano-composite resistant to high-temperature oxidation[J].Nature, 1995, 374(6522): 526–528.

    [5] [5] ZHOU Y, LU K. Polymer-derived high-temperature nonoxide materials: A review[J]. Adv Eng Mater, 2023, 25(9): 1–24.

    [6] [6] LI W, WIDENMEYER M, DING J X, et al. Phase evolution and oxidation resistance of Si3N4/HfB2/HfBxCyN1–x–y ceramic nanocomposites prepared from tailored preceramic polymers[J].Ceram Int, 2023, 49(21): 34164–34172.

    [7] [7] YANG M M, MA C, HU Y B, et al. A strain-temperature integrated polymer-derived SiCN ceramic high temperature sensor with wide-range and ultra-short response time[J]. Adv Funct Mater, 2024:2400400.

    [8] [8] WANG J, WANG K, PEI X L, et al. Irradiation behavior of Cf/SiC composite with titanium carbide (TiC)-based interphase[J]. J Nucl Mater, 2019, 523: 10–15.

    [9] [9] ACKLEY B J, MARTIN K L, KEY T S, et al. Advances in the synthesis of preceramic polymers for the formation of silicon-based and ultrahigh-temperature non-oxide ceramics[J]. Chem Rev, 2023,123(8): 4188–4236.

    [10] [10] DONG X C, GUO C Q, LIU X Y, et al. Processing, characterization and properties of novel gradient Si3N4/SiC fibers derived from polycarbosilanes[J]. J Eur Ceram Soc, 2019, 39(13): 3613–3619.

    [11] [11] BIN MUJIB S, CUCCATO R, MUKHERJEE S, et al. Electrospun SiOC ceramic fiber mats as freestanding electrodes for electrochemical energy storage applications[J]. Ceram Int, 2020,46(3): 3565–3573.

    [12] [12] O’MASTA M R, STONKEVITCH E, PORTER K A, et al. Additive manufacturing of polymer-derived ceramic matrix composites[J]. J Am Ceram Soc, 2020, 103(12): 6712–6723.

    [13] [13] POERSCHKE D L, BRAITHWAITE A, PARK D, et al.Crystallization behavior of polymer-derived Si-O-C for ceramic matrix composite processing[J]. Acta Mater, 2018, 147: 329–341.

    [14] [14] LALE A, SCHMIDT M, MALLMANN M D, et al. Polymer-Derived Ceramics with engineered mesoporosity: From design to application in catalysis[J]. Surf Coat Technol, 2018, 350: 569–586.

    [15] [15] VAKIFAHMETOGLU C, ZEYDANLI D, COLOMBO P. Porous polymer derived ceramics[J]. Mater Sci Eng R Rep, 2016, 106: 1–30.

    [16] [16] WANG Q, KAWANO Y, YU L, et al. Development of high-performance sub-nanoporous SiC-based membranes derived from polytitanocarbosilane[J]. J Membr Sci, 2020, 598: 117688.

    [17] [17] ECKEL Z C, ZHOU C Y, MARTIN J H, et al. Additive manufacturing of polymer-derived ceramics[J]. Science, 2016,351(6268): 58–62.

    [18] [18] QIAN S Y, LIU H Y, WANG Y C, et al. Structural optimization of 3D printed SiC scaffold with gradient pore size distribution as catalyst support for methanol steam reforming[J]. Fuel, 2023, 341:127612.

    [19] [19] ZHOU C, GAO X, XU Y, et al. Synthesis and high-temperature evolution of single-phase amorphous Si–Hf–N ceramics[J]. J Eur Ceram Soc, 2015, 35(7): 2007–2015.

    [20] [20] SEIFOLLAHI BAZARJANI M, KLEEBE H J, MüLLER M M, et al.Nanoporous Silicon Oxycarbonitride Ceramics Derived from Polysilazanes in situ Modified with Nickel Nanoparticles[J]. Chem Mater, 2011, 23(18): 4112–4123.

    [21] [21] CHEN Y G, CAO Y J, WANG Y G, et al. Femtosecond laser pulse ablation characteristics of polymer-derived SiAlCN ceramics[J].Ceram Int, 2020, 46(7): 9741–9750.

    [22] [22] LU L, WEN T H, LI W, et al. Single-source-precursor synthesis of dense monolithic SiC/(Ti0.25Zr0.25Hf0.25Ta0.25)C ceramic nanocomposite with excellent high-temperature oxidation resistance[J]. J Eur Ceram Soc, 2024, 44(2): 595–609.

    [23] [23] YU Z J, YANG L, MIN H, et al. Single-source-precursor synthesis of high temperature stable SiC/C/Fe nanocomposites from a processable hyperbranched polyferrocenylcarbosilane with high ceramic yield[J].J Mater Chem C, 2014, 2(6): 1057–1067.

    [24] [24] WEN Q B, YU Z J, LIU X M, et al. Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfCxN1?x/C ceramic nanocomposites[J]. J Mater Chem C, 2019, 7(34): 10683–10693.

    [25] [25] DUAN W Y, YIN X W, LI Q, et al. A review of absorption properties in silicon-based polymer derived ceramics[J]. J Eur Ceram Soc, 2016, 36(15): 3681–3689.

    [26] [26] GAO Y, HAMANA D, IWASAKI R, et al. Chemical route for synthesis of β-SiAlON: Eu2+ phosphors combining polymer-derived ceramics route with non-hydrolytic sol-gel chemistry[J]. J Sol Gel Sci Technol, 2022, 104(3): 711–723.

    [27] [27] SUJITH R, GANGADHAR J, GREENOUGH M, et al. A review of silicon oxycarbide ceramics as next generation anode materials for lithium-ion batteries and other electrochemical applications[J]. J Mater Chem A, 2023, 11(38): 20324–20348.

    [28] [28] XIE F T, GONZALO-JUAN I, BREITZKE H, et al. Effect of Ca and B incorporation into silicon oxycarbide on its microstructure and phase composition[J]. J Am Ceram Soc, 2019, 102(12): 7645–7655.

    [29] [29] ZAHEER M, SCHMALZ T, MOTZ G, et al. Polymer derived non-oxide ceramics modified with late transition metals[J]. Chem Soc Rev, 2012, 41(15): 5102–5116.

    [30] [30] LIU J J, TIAN C M, JIANG T S, et al. Polymer-derived SiOC ceramics: A potential catalyst support controlled by the sintering temperature and carbon content[J]. J Eur Ceram Soc, 2023, 43(8):3191–3200.

    [31] [31] ARALDI SILVA B, BELCHIOR RIBEIRO L F, GóMEZ GONZáLEZ S Y, et al. SiOC and SiCN-based ceramic supports for catalysts and photocatalysts[J]. Microporous Mesoporous Mater,2021, 327: 111435.

    [32] [32] IONESCU E, KLEEBE H J, RIEDEL R. Silicon-containing polymer-derived ceramic nanocomposites (PDC–NCs): Preparative approaches and properties[J]. Chem Soc Rev, 2012, 41(15):5032–5052.

    [33] [33] LEMBACHER C, SCHUBERT U. Nanosized platinum particles by sol–gel processing of tethered metal complexes: Influence of the precursors and the organic group removal method on the particle size[J]. New J Chem, 1998, 22(7): 721–724.

    [34] [34] WóJCIK-BANIA M, KROWIAK A, STRZEZIK J, et al. Pt supported on cross-linked poly(vinylsiloxanes) and SiCO ceramics—New materials for catalytic applications[J]. Mater Des, 2016, 96: 171–179.

    [35] [35] WILHELM M, ADAM M, B?UMER M, et al. Synthesis and Properties of Porous Hybrid Materials containing Metallic Nanoparticles[J]. Adv Eng Mater, 2008, 10(3): 241–245.

    [36] [36] ADAM M, WILHELM M, GRATHWOHL G. Polysiloxane derived hybrid ceramics with nanodispersed Pt[J]. Microporous Mesoporous Mater, 2012, 151: 195–200.

    [37] [37] AWIN E W, GüNTHER T E, LOUKRAKPAM R, et al. Synthesis and characterization of precursor derived TiN@Si–Al–C–N ceramic nanocomposites for oxygen reduction reaction[J]. Int J Appl Ceram Technol, 2023, 20(1): 59–69.

    [38] [38] MALLMANN M, NISHIHORA R, DIZ ACOSTA E, et al. From polysilazanes to highly micro-/mesoporous Si3N4 containing in situ immobilized Co or Ni-based nanoparticles[J]. Polymer, 2023, 283:126215.

    [39] [39] TADA S, MALLMANN M D, TAKAGI H, et al. Low temperature in situ formation of cobalt in silicon nitride toward functional nitride nanocomposites[J]. Chem Commun, 2021, 57(16): 2057–2060.

    [40] [40] YU Z J, MAO K W, FENG Y. Single-source-precursor synthesis of porous W-containing SiC-based nanocomposites as hydrogen evolution reaction electrocatalysts[J]. J Adv Ceram, 2021, 10(6):1338–1349.

    [41] [41] YU Z J, LI S, ZHANG P, et al. Polymer-derived mesoporous Ni/SiOC(H) ceramic nanocomposites for efficient removal of acid fuchsin[J]. Ceram Int, 2017, 43(5): 4520–4526.

    [42] [42] YU Z J, ZHANG P, FENG Y, et al. Template-free synthesis of porous Fe3O4/SiOC(H) nanocomposites with enhanced catalytic activity[J]. J Am Ceram Soc, 2016, 99(8): 2615–2624.

    [43] [43] CHEN X, HAN S H, YIN D D, et al. Intermetallic Ni2Si/SiCN as a highly efficient catalyst for the one-pot tandem synthesis of imines and secondary amines[J]. Inorg Chem Front, 2020, 7(1): 82–90.

    [44] [44] VIPIN VIJAY V, SAJEEV L B, ANJANA S, et al. “String and bead” model of copper modified polycarbosilane: Synthesis and applications[J]. J Mater Sci, 2022, 57(26): 12393–12404.

    [45] [45] PAPAKOLLU K, BHARDWAJ A, IONESCU E, et al. Effect of structural changes at various length scales in SiVOC ceramic nanocomposites on electrocatalytic performance for the oxygen reduction reaction[J]. ACS Appl Mater Interfaces, 2023, 15(29):34895–34908.

    [46] [46] KAUR S, CHERKASHININ G, FASEL C, et al.Single-source-precursor synthesis of novel V8C7/SiC(O)-based ceramic nanocomposites[J]. J Eur Ceram Soc, 2016, 36(15):3553–3563.

    [47] [47] ZHOU C, OTT A, ISHIKAWA R, et al. Single-source-precursor synthesis and high-temperature evolution of novel mesoporous SiVN(O)-based ceramic nanocomposites[J]. J Eur Ceram Soc, 2020,40(16): 6280–6287.

    [48] [48] TADA S, ANDO S, ASAKA T, et al. Hydrogen transport property of polymer-derived cobalt cation-doped amorphous silica[J]. Inorg Chem Front, 2021, 8(1): 90–99.

    [49] [49] KAUR S, SILVEIRA FIATES A L, REZWAN K, et al. Monometallic and bimetallic SiC(O) ceramic with Ni, Co and/or Fe nanoparticles for catalytic applications[J]. Nanocomposites, 2022,8(1): 194–203.

    [50] [50] SCHMALZ T, KRAUS T, GüNTHNER M, et al. Catalytic formation of carbon phases in metal modified, porous polymer derived SiCN ceramics[J]. Carbon, 2011, 49(9): 3065–3072.

    [51] [51] ZAHEER M, MOTZ G, KEMPE R. The generation of palladium silicide nanoalloy particles in a SiCN matrix and their catalytic applications[J]. J Mater Chem, 2011, 21(46): 18825–18831.

    [52] [52] FEHN S, ZAHEER M, DENNER C E, et al. Robustly supported rhodium nanoclusters: Synthesis and application in selective hydrogenation of lignin derived phenolic compounds[J]. New J Chem,2016, 40(11): 9252–9256.

    [53] [53] FORBERG D, OBENAUF J, FRIEDRICH M, et al. The synthesis of pyrroles via acceptorless dehydrogenative condensation of secondary alcohols and 1, 2-amino alcohols mediated by a robust and reusable catalyst based on nanometer-sized iridium particles[J]. Catal Sci Technol, 2014, 4(12): 4188–4192.

    [54] [54] GLATZ G, SCHMALZ T, KRAUS T, et al. Copper-containing SiCN precursor ceramics (Cu@SiCN) as selective hydrocarbon oxidation catalysts using air as an oxidant[J]. Chem, 2010, 16(14): 4231–4238.

    [55] [55] ECKARDT M, ZAHEER M, KEMPE R. Nitrogen-doped mesoporous SiC materials with catalytically active cobalt nanoparticles for the efficient and selective hydrogenation of nitroarenes[J]. Sci Rep, 2018, 8(1): 2567.

    [56] [56] HAHN G, EWERT J K, DENNER C, et al. A reusable mesoporous nickel nanocomposite catalyst for the selective hydrogenation of nitroarenes in the presence of sensitive functional groups[J].ChemCatChem, 2016, 8(15): 2461–2465.

    [57] [57] SCHWOB T, KEMPE R. A reusable co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes[J].Angew Chem Int Ed Engl, 2016, 55(48): 15175–15179.

    [58] [58] ZAHEER M, KEENAN C D, HERMANNSD?RFER J, et al. Robust microporous monoliths with integrated catalytically active metal sites investigated by hyperpolarized 129Xe NMR[J]. Chem Mater, 2012,24(20): 3952–3963.

    [59] [59] ZAHEER M, HERMANNSD?RFER J, KRETSCHMER W P, et al.Robust heterogeneous nickel catalysts with tailored porosity for the selective hydrogenolysis of aryl ethers[J]. ChemCatChem, 2014, 6(1):91–95.

    [60] [60] WANG J, GRüNBACHER M, PENNER S, et al. Porous silicon oxycarbonitride ceramics with palladium and Pd2Si nanoparticles for dry reforming of methane[J]. Polymers, 2022, 14(17): 3470.

    [61] [61] BHASKAR S, AWIN E W, KUMAR K C H, et al. Design of nanoscaled heterojunctions in precursor-derived t-ZrO2/SiOC(N) nanocomposites: Transgressing the boundaries of catalytic activity from UV to visible light[J]. Sci Rep, 2020, 10(1): 430.

    [62] [62] BECHELANY M C, LALE A, BALESTRAT M, et al. Ceramic nanocomposites prepared via the in situ formation of a novel TiZrN2 nanophase in a polymer-derived Si3N4 matrix[J]. J Eur Ceram Soc,2022, 42(10): 4172–4178.

    [63] [63] FENG Y, YU Z J, RIEDEL R. Enhanced hydrogen evolution reaction catalyzed by carbon-rich Mo4.8Si3C0.6/C/SiC nanocomposites via a PDC approach[J]. J Am Ceram Soc, 2020, 103(2): 1385–1395.

    [64] [64] ZHOU C, LI S, YU Z J. Polymer-derived FexSiy/SiC@SiOC ceramic nanocomposites with tunable microwave absorption behavior[J]. Int J Appl Ceram Technol, 2022, 19(2): 813–827.

    [65] [65] SCHWARZ S, FRIEDRICH M, MOTZ G, et al. Synthesis of Hierarchically Porous SiCN Materials and Pd Catalysts based on it for the Oxidation of Methane[J]. Zeitschrift Anorg Allge Chemie,2015, 641(12/13): 2266–2271.

    [66] [66] SCHMIDT T, ALBUQUERQUE R Q, KEMPE R, et al. Investigating the electronic structure of a supported metal nanoparticle: Pd in SiCN[J]. Phys Chem Chem Phys, 2016, 18(46): 31966–31972.

    [67] [67] KULYK K, BORYSENKO M, KULIK T, et al. Chemisorption and thermally induced transformations of polydimethylsiloxane on the surface of nanoscale silica and ceria/silica[J]. Polym Degrad Stab,2015, 120: 203–211.

    [68] [68] GARCíA B, CASADO E, TAMAYO A. Synthesis and characterization of Ce/SiOC nanocomposites through the polymer derived ceramic method and evaluation of their catalytic activity[J].Ceram Int, 2020, 46(2): 1362–1373.

    [69] [69] BOUTONNET M, KIZLING J, STENIUS P, et al. The preparation of monodisperse colloidal metal particles from microemulsions[J].Colloids Surf, 1982, 5(3): 209–225.

    [70] [70] BORCHARDT L, OSCHATZ M, FRIND R, et al. Ceria/silicon carbide core-shell materials prepared by miniemulsion technique[J].Beilstein J Nanotechnol, 2011, 2: 638–644.

    [71] [71] HOFFMANN C, BIEMELT T, LOHE M R, et al. Nanoporous and highly active silicon carbide supported CeO2-catalysts for the methane oxidation reaction[J]. Small, 2014, 10(2): 316–322.

    [72] [72] SANDRA F, BALLESTERO A, NGUYEN V L, et al. Silicon carbide-based membranes with high soot particle filtration efficiency, durability and catalytic activity for CO/HC oxidation and soot combustion[J]. J Membr Sci, 2016, 501: 79–92.

    [73] [73] KOCKRICK E, KRAWIEC P, PETASCH U, et al. Porous CeOX/SiC nanocomposites prepared from reverse polycarbosilane-based microemulsions[J]. Chem Mater, 2008, 20(1): 77–83.

    [74] [74] KOCKRICK E, FRIND R, ROSE M, et al. Platinum induced crosslinking of polycarbosilanes for the formation of highly porous CeO2/silicon oxycarbide catalysts[J]. J Mater Chem, 2009, 19(11):1543–1553.

    [75] [75] CHOI M, HEO W, KLEITZ F, et al. Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness[J]. Chem Commun, 2003(12):1340–1341.

    [76] [76] MAJOULET O, SANDRA F, BECHELANY M C, et al.Silicon–boron–carbon–nitrogen monoliths with high, interconnected and hierarchical porosity[J]. J Mater Chem A, 2013, 1(36):10991–11000.

    [77] [77] MAJOULET O, ALAUZUN J G, GOTTARDO L, et al. Ordered mesoporous silicoboron carbonitride ceramics from boron-modified polysilazanes: Polymer synthesis, processing and properties[J].Microporous Mesoporous Mater, 2011, 140(1/3): 40–50.

    [78] [78] SHI Y F, MENG Y, CHEN D H, et al. Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability[J].Adv Funct Mater, 2006, 16(4): 561–567.

    [79] [79] SALAMEH C, BRUMA A, MALO S, et al. Monodisperse platinum nanoparticles supported on highly ordered mesoporous silicon nitride nanoblocks: Superior catalytic activity for hydrogen generation from sodium borohydride[J]. RSC Adv, 2015, 5(72): 58943–58951.

    [80] [80] LALE A, WASAN A, KUMAR R, et al. Organosilicon polymer-derived mesoporous 3D silicon carbide, carbonitride and nitride structures as platinum supports for hydrogen generation by hydrolysis of sodium borohydride[J]. Int J Hydrog Energy, 2016,41(34): 15477–15488.

    [81] [81] MAJOULET O, SALAMEH C, SCHUSTER M E, et al. Preparation,characterization, and surface modification of periodic mesoporous silicon–aluminum–carbon–nitrogen frameworks[J]. Chem Mater,2013, 25(20): 3957–3970.

    [82] [82] SHI Y F, WAN Y, ZHAO D Y. Ordered mesoporous non-oxide materials[J]. Chem Soc Rev, 2011, 40(7): 3854–3878.

    [83] [83] SACHAU S M, ZAHEER M, LALE A, et al. Micro-/ mesoporous platinum–SiCN nanocomposite catalysts (Pt@SiCN): From design to catalytic applications[J]. Chem, 2016, 22(43): 15508–15512.

    [84] [84] EWERT J K, DENNER C, FRIEDRICH M, et al. Meso-structuring of SiCN ceramics by polystyrene templates[J]. Nanomaterials, 2015,5(2): 425–435.

    [85] [85] ZHOU C, FENG H P, LIU G G, et al. Synthesis, microstructure, and catalytic properties of porous SiFeCO nanocomposites derived from MIL-101(Fe)-modified PCS[J]. Int J Appl Ceram Technol, 2023,20(1): 24–38.

    [86] [86] ADAM M, KOCANIS S, FEY T, et al. Hierarchically ordered foams derived from polysiloxanes with catalytically active coatings[J]. J Eur Ceram Soc, 2014, 34(7): 1715–1725.

    [87] [87] ADAM M, B?UMER M, SCHOWALTER M, et al. Generation of Pt- and Pt/Zn-containing ceramers and their structuring as macro/microporous foams[J]. Chem Eng J, 2014, 247: 205–215.

    [88] [88] KAMPERMAN M, BURNS A, WEISSGRAEBER R, et al. Integrating structure control over multiple length scales in porous high temperature ceramics with functional platinum nanoparticles[J].Nano Lett, 2009, 9(7): 2756–2762.

    [89] [89] FORBERG D, SCHWOB T, ZAHEER M, et al. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia[J]. Nat Commun, 2016,7: 13201.

    [90] [90] SCHUBERT M, WILHELM M, BRAGULLA S, et al. The influence of the pyrolysis temperature on the material properties of cobalt and nickel containing precursor derived ceramics and their catalytic use for CO2 methanation and fischer–tropsch synthesis[J]. Catal Lett,2017, 147(2): 472–482.

    [91] [91] MACEDO H P, MEDEIROS R L B A, ILSEMANN J, et al.Nickel-containing hybrid ceramics derived from polysiloxanes with hierarchical porosity for CO2 methanation[J]. Microporous Mesoporous Mater, 2019, 278: 156–166.

    [92] [92] SCHUMACHER D, WILHELM M, REZWAN K. Porous SiOC monoliths with catalytic activity by in situ formation of Ni nanoparticles in solution-based freeze casting[J]. J Am Ceram Soc,2020, 103(5): 2991–3001.

    [93] [93] SZOLDATITS E, ESSMEISTER J, SCHACHTNER L, et al.Polymer-derived SiOC as support material for Ni-based catalysts:CO2 methanation performance and effect of support modification with La2O3[J]. Front Chem, 2023, 11: 1163503.

    [94] [94] CEPOLLARO E M, CIMINO S, LISI L, et al. Ru/Al2 O3 on polymer-derived SiC foams as structured catalysts for CO2 methanation[J]. Catalysts, 2022, 12(9): 956.

    [95] [95] FRIND R, BORCHARDT L, KOCKRICK E, et al. Complete and partial oxidation of methane on ceria/platinum silicon carbide nanocomposites[J]. Catal Sci Technol, 2012, 2(1): 139–146.

    [96] [96] KOCKRICK E, BORCHARDT L, SCHRAGE C, et al. CeO2/Pt catalyst nanoparticle containing carbide-derived carbon composites by a new in situ functionalization strategy[J]. Chem Mater, 2011,23(1): 57–66.

    [97] [97] FENG Y, LAI S Y, YANG L, et al. Polymer-derived porous Bi2WO6/SiC(O) ceramic nanocomposites with high photodegradation efficiency towards Rhodamine B[J]. Ceram Int, 2018, 44(7):8562–8569.

    [98] [98] SEIFOLLAHI BAZARJANI M, HOJAMBERDIEV M, MORITA K,et al. Visible light photocatalysis with c-WO(3–x)/WO3×H2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer[J]. J Am Chem Soc, 2013, 135(11):4467–4475.

    [99] [99] WASAN AWIN E, LALE A, KUMAR K C N H, et al. Novel precursor-derived meso-/ macroporous TiO?/SiOC nanocomposites with highly stable anatase nanophase providing visible light photocatalytic activity and superior adsorption of organic dyes[J].Materials, 2018, 11(3): 362.

    [100] [100] HOJAMBERDIEV M, PRASAD R M, MORITA K, et al.Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water[J]. Appl Catal B Environ, 2012, 115/116: 303–313.

    [101] [101] HOJAMBERDIEV M, PRASAD R M, MORITA K, et al.Polymer-derived mesoporous SiOC/ZnO nanocomposite for the purification of water contaminated with organic dyes[J]. Microporous Mesoporous Mater, 2012, 151: 330–338.

    [102] [102] CERVANTES-DIAZ K B, DROBEK M, JULBE A, et al.Mesoporous SiC-based photocatalytic membranes and coatings for water treatment[J]. Membranes, 2023, 13(7): 672.

    [103] [103] CANUTO DE ALMEIDA E SILVA T, MOOSTE M,KIBENA-P?LDSEPP E, et al. Polymer-derived Co/Ni–SiOC(N) ceramic electrocatalysts for oxygen reduction reaction in fuel cells[J].Catal Sci Technol, 2019, 9(3): 854–866.

    [104] [104] MONI P, POLLACHINI M, WILHELM M, et al. Metal-containing ceramic composite with in situ grown carbon nanotube as a cathode catalyst for anion exchange membrane fuel cell and rechargeable zinc–air battery[J]. ACS Appl Energy Mater, 2019, 2(8): 6078–6086.

    [105] [105] MONI P, MOOSTE M, TAMMEVESKI K, et al. One-dimensional polymer-derived ceramic nanowires with electrocatalytically active metallic silicide tips as cathode catalysts for Zn–air batteries[J]. RSC Adv, 2021, 11(63): 39707–39717.

    [106] [106] PE?A-ALONSO R, SICURELLI A, CALLONE E, et al. A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells[J]. J Power Sources, 2007, 165(1): 315–323.

    [107] [107] SHAH S R, RAJ R. Nanodevices that explore the synergies between PDCs and carbon nanotubes[J]. J Eur Ceram Soc, 2005, 25(2/3):243–249.

    [108] [108] ARALDI DA SILVA B, DA SILVA J C G, GóMEZ GONZáLEZ S Y, et al. Synergetic one-step synthesis of SiC/SiOC/TiO2 composites for visible-light-driven hydrogen generation from methanol reforming[J]. Ceram Int, 2022, 48(22): 32917–32928.

    [109] [109] FENG Y, YU Z J, SCHUCH J, et al. Nowotny phase Mo3+2xSi3C0.6 dispersed in a porous SiC/C matrix: A novel catalyst for hydrogen evolution reaction[J]. J Am Ceram Soc, 2020, 103(1): 508–519.

    [110] [110] WANG D C, ZHENG Y J, ZHAO H, et al. Core–shell β-SiC@PPCN heterojunction for promoting photo-thermo catalytic hydrogen production[J]. ACS Catal, 2023, 13(15): 10104–10114.

    [111] [111] WU L Y, LI Y P, ZHOU B H, et al. Vertical graphene on rice-husk-derived SiC/C composite for highly selective photocatalytic CO2 reduction into CO[J]. Carbon, 2023, 207: 36–48.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Cong, FENG Yao, YU Zhaoju. Polymer-Derived Ceramic Nanocomposites: From Composition and Structure Design to Catalytic Properties[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2847

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 27, 2024

    Accepted: --

    Published Online: Nov. 8, 2024

    The Author Email: ZHOU Cong (congzhou2006@163.com)

    DOI:10.14062/j.issn.0454-5648.20240151

    Topics