Acta Optica Sinica, Volume. 27, Issue 1, 148(2007)
Photorefractive Grating Dynamics under Large Modulation and Strong Applied Electric Field
[3] [3] S. Breer, K. Buse. Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate[J]. Appl. Phys. B, 1998, 66(3): 339~345
[5] [5] Yingchun Guo, Liren Liu, Youwen Liu et al.. Photorefractive grating formulation with any light modulation and excitation: exact and approximate steady-state analytic solutions[J]. J. Opt. Soc. Am. B, 2000, 17(6): 889~897
[6] [6] M. G. Moharam, T. K. Gaylord, R. Magnusson et al.. Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths[J]. J. Appl. Phys., 1979, 50(9): 5642~5651
[7] [7] Ph. Refregier, L. Solymar, H. Rajbenbach et al.. Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: Theory and experiments[J]. J. Appl. Phys., 1985, 58(1): 45~57
[8] [8] C. H. Kawk, S. Y. Park, J. S. Jeong et al.. An analytical solution for large modulation effects in photorefractive two-wave couplings[J]. Opt. Commun., 1994, 105(5~6): 353~358
[9] [9] E. Serrano, V. Lopez, M. Carrascosa et al.. Recording and erasure kinetics in photorefractive materials at large modulation depths[J]. J. Opt. Soc. Am. B, 1994, 11(4): 670~675
[10] [10] G. A. Brost. Photorefractive grating formations at large modulations with alternating electric fields[J]. J. Opt. Soc. Am. B, 1992, 9(8): 1454~1460
[11] [11] G. A. Brost. Numerical analysis of photorefractive grating formation dynamics at large modulation in BSO[J]. Opt. Commun., 1993, 96(1~3): 113~116
[12] [12] E. Serrano, M. Carrascosa, F. Agullo-Lopez. Analytical and numerical study of photorefractive kinetics at high modulation depths[J]. J. Opt. Soc. Am. B, 1996, 13(11): 2587~2594
[14] [14] J. Feinberg, D. Heiman, A. R. Tanguay et al.. Photorefractive effects and light-induced charge migration in barium titanate[J]. J. Appl. Phys., 1980, 51(3): 1297~1305
[15] [15] N. K. Madsen, R. F. Sincovec. Algorithm 540: PDECOL, general collocation software for partial differential equations[J]. ACM Trans. Mathematical Software, 1979, 5(3): 326~351
[16] [16] Y. H. Ja. Finite element method to solve the nonlinear coupled-wave equations for degenerate two-wave and four-wave mixing[J]. Appl. Opt., 1986, 25(23): 4306~4310
[17] [17] F. Jariego, F. Agulló-López. Monotonic versus oscillatory behaviour during holographic writing in photorefractive photovoltaic materials[J]. Opt. Commun., 1990, 76(2): 169~172
[18] [18] Pochi Yeh. Two-wave mixing in nonlinear media[J]. IEEE J. Quant. Electtron., 1989, 25(3): 484~519
[19] [19] R. De Vre, M. Jeganathan, J. P. Wilde et al.. Effect of applied fields on the Bragg condition and the diffraction efficiency in photorefractive crystals[J]. Opt. Lett., 1994, 19(12): 910~912
[20] [20] A. Grunnet-Jepsen, C. L. Thompson, W. E. Moerner. Measurement of the spatial phase shift in high-gain photorefractive materials[J]. Opt. Lett., 1997, 22(12): 874~876
[21] [21] A. A. Freschi, P. M. Garcia, I. Rasnik et al.. Avoiding hologram bending in photorefractive crystals[J]. Opt. Lett., 1996, 21(2): 152~154
[22] [22] S. Tao, Z. H. Song, D. R. Selviah. Bragg-shift of holographic gratings in photorefractive Fe:LiNbO3 crystals[J]. Opt. Commun., 1994, 108(1): 144~152
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Photorefractive Grating Dynamics under Large Modulation and Strong Applied Electric Field[J]. Acta Optica Sinica, 2007, 27(1): 148