Frontiers of Optoelectronics, Volume. 14, Issue 2, 170(2021)
Metalenses: from design principles to functional applications
[1] [1] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 1968, 10(4): 509–514
[2] [2] Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776
[3] [3] Pendry J B, Holden A J, Robbins D J, StewartWJ. Low frequency plasmons in thin-wire structures. Journal of Physics Condensed Matter, 1998, 10(22): 4785–4809
[4] [4] Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47 (11): 2075–2084
[5] [5] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187
[6] [6] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
[7] [7] Houck A A, Brock J B, Chuang I L. Experimental observations of a left-handed material that obeys Snell’s law. Physical Review Letters, 2003, 90(13): 137401
[8] [8] Parazzoli C G, Greegor R B, Li K, Koltenbah B E C, Tanielian M. Experimental verification and simulation of negative index of refraction using Snell’s law. Physical Review Letters, 2003, 90 (10): 107401
[9] [9] endry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
[10] [10] Pendry J B, Ramakrishna S A. Refining the perfect lens. Physica B, Condensed Matter, 2003, 338(1–4): 329–332
[11] [11] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534– 537
[12] [12] Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686
[13] [13] Leonhardt U. Optical conformal mapping. Science, 2006, 312 (5781): 1777–1780
[14] [14] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
[15] [15] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
[16] [16] Engheta N. Thin absorbing screens using metamaterial surfaces. In: Proceedings of IEEE Antennas and Propagation Society International Symposium. San Antonio: IEEE, 2002, 392–395
[17] [17] Tretyakov S A, Maslovski S I. Thin absorbing structure for all incidence angles based on the use of a high-impedance surface. Microwave and Optical Technology Letters, 2003, 38(3): 175–178
[18] [18] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla WJ. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 2009, 79(12): 125104
[19] [19] Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403
[20] [20] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, 99(6): 063908
[21] [21] Zhang S, Park Y S, Li J, Lu X, Zhang W, Zhang X. Negative refractive index in chiral metamaterials. Physical Review Letters, 2009, 102(2): 023901
[22] [22] Chen H T, PadillaWJ, Cich M J, Azad A K, Averitt R D, Taylor A J. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151
[23] [23] Burresi M, Diessel D, van Oosten D, Linden S, Wegener M, Kuipers L. Negative-index metamaterials: looking into the unit cell. Nano Letters, 2010, 10(7): 2480–2483
[24] [24] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1(4): 1600064
[25] [25] He Q, Sun S, Xiao S, Zhou L. High-efficiency metasurfaces: principles, realizations, and applications. Advanced Optical Materials, 2018, 6(19): 1800415
[26] [26] Chen S, Li Z, Zhang Y, Cheng H, Tian J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Advanced Optical Materials, 2018, 6(13): 1800104
[27] [27] Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Ping Yang, Wang S, Duan H. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics, 2020, 9(12): 3755–3780
[28] [28] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
[29] [29] Chen W T, Zhu A Y, Khorasaninejad M, Shi Z, Sanjeev V, Capasso F. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Letters, 2017, 17(5): 3188–3194
[30] [30] Tseng ML, Hsiao H H, Chu C H, Chen MK, Sun G, Liu A Q, Tsai D P. Metalenses: advances and applications. Advanced Optical Materials, 2018, 6(18): 1800554
[31] [31] Liang H, Martins A, Borges B H V, Zhou J, Martins E R, Li J, Krauss T F. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica, 2019, 6(12): 1461
[32] [32] Moon S W, Kim Y, Yoon G, Rho J. Recent progress on ultrathin metalenses for flat optics. iScience, 2020, 23(12): 101877
[33] [33] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalenses. PhotoniX, 2020, 1 (1): 2
[34] [34] Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Letters, 2012, 12(11): 5750– 5755
[35] [35] Zhou Z, Li J, Su R, Yao B, Fang H, Li K, Zhou L, Liu J, Stellinga D, Reardon C P, Krauss T F, Wang X. Efficient silicon metasurfaces for visible light. ACS Photonics, 2017, 4(3): 544–551
[36] [36] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 2017, 4(6): 625
[37] [37] Lawrence N, Trevino J, Dal Negro L. Aperiodic arrays of active nanopillars for radiation engineering. Journal of Applied Physics, 2012, 111(11): 113101
[38] [38] Li X, Xiao S, Cai B, He Q, Cui T J, Zhou L. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Optics Letters, 2012, 37(23): 4940–4942
[39] [39] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index metasurfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012, 11(5): 426–431
[40] [40] Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, KungWT, Guo G Y, Zhou L, Tsai D P. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 2012, 12(12): 6223–6229
[41] [41] Walther B, Helgert C, Rockstuhl C, Setzpfandt F, Eilenberger F, Kley E B, Lederer F, Tünnermann A, Pertsch T. Spatial and spectral light shaping with metamaterials. Advanced Materials, 2012, 24(47): 6300–6304
[42] [42] ChenWT, Yang K Y,Wang CM, Huang YW, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Letters, 2014, 14(1): 225–230
[43] [43] Jiang Z H, Yun S, Lin L, Bossard J A, Werner D H, Mayer T S. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength Inclusions. Scientific Reports, 2013, 3 (1): 1571
[44] [44] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, 110(19): 197401
[45] [45] Yang Y,Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters, 2014, 14 (3): 1394–1399
[46] [46] Yao Y, Shankar R, Kats MA, Song Y, Kong J, Loncar M, Capasso F. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 2014, 14(11): 6526–6532
[47] [47] Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342–1345
[48] [48] Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S. High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials, 2015, 3(6): 813–820
[49] [49] Zhu W, Song Q, Yan L, Zhang W, Wu P C, Chin L K, Cai H, Tsai D P, Shen Z X, Deng T W, Ting S K, Gu Y, Lo G Q, Kwong D L, Yang Z C, Huang R, Liu A Q, Zheludev N. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Advanced Materials, 2015, 27(32): 4739–4743
[50] [50] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nature Communications, 2016, 7(1): 12533
[51] [51] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nature Communications, 2016, 7(1): 10367
[52] [52] Hu J, Zhao X, Lin Y, Zhu A, Zhu X, Guo P, Cao B, Wang C. Alldielectric metasurface circular dichroism waveplate. Scientific Reports, 2017, 7(1): 41893
[53] [53] Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Letters, 2011, 11(5): 2038–2042
[54] [54] Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T. Dual-polarity plasmonic metalens for visible light. Nature Communications, 2012, 3(1): 1198
[55] [55] Kang M, Chen J, Wang X L, Wang H T. Twisted vector field from an inhomogeneous and anisotropic metamaterial. Journal of the Optical Society of America B, Optical Physics, 2012, 29(4): 572– 576
[56] [56] Kang M, Feng T, Wang H T, Li J. Wave front engineering from an array of thin aperture antennas. Optics Express, 2012, 20(14): 15882–15890
[57] [57] Li G, Kang M, Chen S, Zhang S, Pun E Y, Cheah KW, Li J. Spinenabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters, 2013, 13(9): 4148–4151
[58] [58] Lin D, Fan P, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302
[59] [59] Shaltout A, Liu J, Shalaev V M, Kildishev A V. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Letters, 2014, 14(8): 4426–4431
[60] [60] Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur S N, de Lustrac A, Wu Q, Qiu C W, Alù A. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Advanced Materials, 2015, 27(7): 1195–1200
[61] [61] Kim J, Li Y, Miskiewicz M N, Oh C, Kudenov M W, Escuti M J. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica, 2015, 2(11): 958
[62] [62] Li G, Chen S, Pholchai N, Reineke B, Wong PW, Pun E Y, Cheah K W, Zentgraf T, Zhang S. Continuous control of the nonlinearity phase for harmonic generations. Nature Materials, 2015, 14(6): 607–612
[63] [63] Luo W, Xiao S, He Q, Sun S, Zhou L. Photonic spin hall effect with nearly 100% efficiency. Advanced Optical Materials, 2015, 3 (8): 1102–1108
[64] [64] Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W, Cheah K W, Pun E Y, Zhang S, Chen X. Helicity multiplexed broadband metasurface holograms. Nature Communications, 2015, 6(1): 8241
[65] [65] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10(4): 308–312
[66] [66] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Letters, 2016, 16(4): 2818–2823
[67] [67] Khorasaninejad M, Ambrosio A, Kanhaiya P, Capasso F. Broadband and chiral binary dielectric meta-holograms. Science Advances, 2016, 2(5): e1501258
[68] [68] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194
[69] [69] Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light, Science & Applications, 2017, 6(5): e16259
[70] [70] Luo W, Sun S, Xu H X, He Q, Zhou L. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Physical Review Applied, 2017, 7(4): 044033
[71] [71] Ma Z, Li Y, Li Y, Gong Y, Maier S A, Hong M. All-dielectric planar chiral metasurface with gradient geometric phase. Optics Express, 2018, 26(5): 6067–6078
[72] [72] Xu R, Chen P, Tang J, Duan W, Ge S J, Ma L L, Wu R X, Hu W, Lu Y Q. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Physical Review Applied, 2018, 10 (3): 034061
[73] [73] Yoon G, Lee D, Nam K T, Rho J. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 2018, 12(7): 6421–6428
[74] [74] Ansari M A, Kim I, Lee D, Waseem M H, Zubair M, Mahmood N, Badloe T, Yerci S, Tauqeer T, Mehmood M Q, Rho J. A spinencoded all-dielectric metahologram for visible light. Laser & Photonics Reviews, 2019, 13(5): 1900065
[75] [75] Xu T, Du C, Wang C, Luo X. Subwavelength imaging by metallic slab lens with nanoslits. Applied Physics Letters, 2007, 91(20): 201501
[76] [76] Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A. Subwavelength- thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 2015, 6(1): 7069
[77] [77] Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F. Polarization-insensitive metalenses at visible wavelengths. Nano Letters, 2016, 16(11): 7229–7234
[78] [78] Sun W, He Q, Sun S, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light, Science & Applications, 2016, 5(1): e16003
[79] [79] Lalanne P, Astilean S, Chavel P, Cambril E, Launois H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Optics Letters, 1998, 23(14): 1081–1083
[80] [80] Schonbrun E, Seo K, Crozier K B. Reconfigurable imaging systems using elliptical nanowires. Nano Letters, 2011, 11(10): 4299–4303
[81] [81] West P R, Stewart J L, Kildishev A V, Shalaev VM, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R. Alldielectric subwavelength metasurface focusing lens. Optics Express, 2014, 22(21): 26212–26221
[82] [82] Zhang Q, Li M, Liao T, Cui X. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface. Optics Communications, 2018, 411: 93–100
[83] [83] Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters, 2012, 12(12): 6328–6333
[84] [84] Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4700423
[85] [85] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters, 2012, 12(9): 4932–4936
[86] [86] Ni X, Ishii S, Kildishev A V, Shalaev V M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light, Science & Applications, 2013, 2(4): e72
[87] [87] Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901
[88] [88] Wang S, Wu P C, Su V C, Lai Y C, Hung Chu C, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, Tsai D P. Broadband achromatic optical metasurface devices. Nature Communications, 2017, 8(1): 187
[89] [89] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13(3): 220– 226
[90] [90] Chen W T, Zhu A Y, Sisler J, Huang Y W, Yousef K M A, Lee E, Qiu C W, Capasso F. Broadband achromatic metasurfacerefractive optics. Nano Letters, 2018, 18(12): 7801–7808
[91] [91] Li S, Li X,Wang G, Liu S, Zhang L, Zeng C,Wang L, Sun Q, Zhao W, Zhang W. Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface. Advanced Optical Materials, 2019, 7(5): 1801365
[92] [92] Tian S, Guo H, Hu J, Zhuang S. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Optics Express, 2019, 27(2): 680–688
[93] [93] Chen W T, T?r?k P, Foreman M R, Liao C Y, Tsai W Y, Wu P R, Tsai D P. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology, 2016, 27(22): 224002
[94] [94] Yuan Y, Sun S, Chen Y, Zhang K, Ding X, Ratni B, Wu Q, Burokur S N, Qiu CW. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Advanced Science, 2020, 7(18): 2001437
[95] [95] Zhang J, Liang Y, Wu S, Xu W, Zheng S, Zhang L. Single-layer dielectric metasurface with giant chiroptical effects combining geometric and propagation phase. Optics Communications, 2021, 478: 126405
[96] [96] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
[97] [97] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Optics Express, 2016, 24(16): 18468–18477
[98] [98] Liu Z, Li Z, Liu Z, Li J, Cheng H, Yu P, Liu W, Tang C, Gu C, Li J, Chen S, Tian J. High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces. Advanced Functional Materials, 2015, 25(34): 5428–5434
[99] [99] agasaki Y, Suzuki M, Takahara J. All-dielectric dual-color pixel with subwavelength resolution. Nano Letters, 2017, 17(12): 7500– 7506
[100] [100] Liang H, Lin Q, Xie X, Sun Q, Wang Y, Zhou L, Liu L, Yu X, Zhou J, Krauss T F, Li J. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Letters, 2018, 18(7): 4460–4466
[101] [101] Liu C H, Zheng J, Colburn S, Fryett T K, Chen Y, Xu X, Majumdar A. Ultrathin van derWaals metalenses. Nano Letters, 2018, 18(11): 6961–6966
[102] [102] Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F. Achromatic metasurface lens at telecommunication wavelengths. Nano Letters, 2015, 15(8): 5358–5362
[103] [103] Shi Z, Khorasaninejad M, Huang Y W, Roques-Carmes C, Zhu A Y, ChenWT, Sanjeev V, Ding ZW, Tamagnone M, Chaudhary K, Devlin R C, Qiu C W, Capasso F. Single-layer metasurface with controllable multiwavelength functions. Nano Letters, 2018, 18(4): 2420–2427
[104] [104] Shrestha S, Overvig A C, Lu M, Stein A, Yu N. Broadband achromatic dielectric metalenses. Light, Science & Applications, 2018, 7(1): 85
[105] [105] Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W. A broadband achromatic metalens array for integral imaging in the visible. Light, Science & Applications, 2019, 8(1): 67
[106] [106] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P. A broadband achromatic metalens in the visible. Nature Nanotechnology, 2018, 13(3): 227–232
[107] [107] Lin R J, Su V C, Wang S, Chen M K, Chung T L, Chen Y H, Kuo H Y, Chen J W, Chen J, Huang Y T,Wang J H, Chu C H, Wu P C, Li T,Wang Z, Zhu S, Tsai D P. Achromatic metalens array for fullcolour light-field imaging. Nature Nanotechnology, 2019, 14(3): 227–231
[108] [108] Ye M, Ray V, Yi Y S. Achromatic flat subwavelength grating lens over whole visible bandwidths. IEEE Photonics Technology Letters, 2018, 30(10): 955–958
[109] [109] Zhang Z, Cui Z, Liu Y,Wang S, Staude I, Yang Z, Zhao M. Design of a broadband achromatic dielectric metalens for linear polarization in the near-infrared spectrum. OSA Continuum, 2018, 1(3): 882–890
[110] [110] Chen W T, Zhu A Y, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 2019, 10 (1): 355
[111] [111] Cheng Q, Ma M, Yu D, Shen Z, Xie J, Wang J, Xu N, Guo H, Hu W, Wang S, Li T, Zhuang S. Broadband achromatic metalens in terahertz regime. Science Bulletin, 2019, 64(20): 1525–1531
[112] [112] Zhao F, Jiang X, Li S, Chen H, Liang G,Wen Z, Zhang Z, Chen G. Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface. Journal of Physics D, Applied Physics, 2019, 52(50): 505110
[113] [113] Chung H, Miller O D. High-NA achromatic metalenses by inverse design. Optics Express, 2020, 28(5): 6945–6965
[114] [114] Ou K, Yu F, Li G, Wang W, Miroshnichenko A E, Huang L, Wang P, Li T, Li Z, Chen X, Lu W. Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 2020, 6 (37): eabc0711
[115] [115] Sisler J, Chen WT, Zhu AY, Capasso F. Controlling dispersion in multifunctional metasurfaces. APL Photonics, 2020, 5(5): 056107
[116] [116] Zhao F, Li Z, Dai X, Liao X, Li S, Cao J, Shang Z, Zhang Z, Liang G, Chen G, Li H, Wen Z. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens. Advanced Optical Materials, 2020, 8(21): 2000842
[117] [117] Yoon G, Kim I, Rho J. Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163: 7–20
[118] [118] Zuo R, Liu W, Cheng H, Chen S, Tian J. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Advanced Optical Materials, 2018, 6(21): 1800795
[119] [119] Li Z, Zhang T, Wang Y, Kong W, Zhang J, Huang Y, Wang C, Li X, Pu M, Luo X. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser & Photonics Reviews, 2018, 12(10): 1800064
[120] [120] Lin R, Li X. Multifocal metalens based on multilayer Pancharatnam–Berry phase elements architecture. Optics Letters, 2019, 44(11): 2819
[121] [121] Gao S, Park C S, Zhou C, Lee S S, Choi D Y. Twofold polarization-selective all-dielectric Trifoci metalens for linearly polarized visible light. Advanced Optical Materials, 2019, 7(21): 1900883
[122] [122] Khorasaninejad M, ChenWT, Zhu A Y, Oh J, Devlin R C, Rousso D, Capasso F. Multispectral chiral imaging with a metalens. Nano Letters, 2016, 16(7): 4595–4600
[123] [123] Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q, Balakin A V, Shkurinov A P, Chen X, Zhu Y, Zhuang S. A multifoci metalens with polarization-rotated focal points. Laser & Photonics Reviews, 2019, 13(12): 1900182
[124] [124] Aiello M D, Backer A S, Sapon A J, Smits J, Perreault J D, Llull P, Acosta V M. Achromatic varifocal metalens for the visible spectrum. ACS Photonics, 2019, 6(10): 2432–2440
[125] [125] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A. MEMS-tunable dielectric metasurface lens. Nature Communications, 2018, 9(1): 812
[126] [126] Yilmaz N, Ozdemir A, Ozer A, Kurt H. Rotationally tunable polarization-insensitive single and multifocal metasurface. Journal of Optics, 2019, 21(4): 045105
[127] [127] Wei Y, Wang Y, Feng X, Xiao S, Wang Z, Hu T, Hu M, Song J, Wegener M, Zhao M, Xia J, Yang Z. Compact optical polarizationinsensitive zoom metalens doublet. Advanced Optical Materials, 2020, 8(13): 2000142
[128] [128] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 2016, 3(6): 628
[129] [129] Kwon H, Arbabi E, Kamali SM, Faraji-Dana M, Faraon A. Singleshot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nature Photonics, 2020, 14(2): 109– 114
[130] [130] Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798
[131] [131] Chen C, Song W, Chen J W, Wang J H, Chen Y H, Xu B, Chen M K, Li H, Fang B, Chen J, Kuo H Y,Wang S, Tsai D P, Zhu S, Li T. Spectral tomographic imaging with aplanatic metalens. Light, Science & Applications, 2019, 8(1): 99
[132] [132] Li L, Liu Z, Ren X, Wang S, Su V C, Chen M K, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 2020, 368(6498): 1487–1490.
Get Citation
Copy Citation Text
Xiao FU, Haowen LIANG, Juntao Li. Metalenses: from design principles to functional applications[J]. Frontiers of Optoelectronics, 2021, 14(2): 170
Category: REVIEW ARTICLE
Received: Jan. 4, 2021
Accepted: Feb. 21, 2021
Published Online: Dec. 1, 2021
The Author Email: Haowen LIANG (lianghw26@mail.sysu.edu.cn)