Journal of Synthetic Crystals, Volume. 54, Issue 5, 841(2025)
First-Principles Study on the Relationship Between Structure and Properties of Tungstate with d10 Electron Configuration
[1] PULLAR R C, FARRAH S, ALFORD N M. MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. Journal of the European Ceramic Society, 27, 1059-1063(2007).
[2] PANDEY P K, BHAVE N S, KHARAT R B. Spray deposition process of polycrystalline thin films of CuWO4 and study on its photovoltaic electrochemical properties. Materials Letters, 59, 3149-3155(2005).
[3] ZHAO X, YAO W Q, WU Y et al. Fabrication and photoelectrochemical properties of porous ZnWO4 film. Journal of Solid State Chemistry, 179, 2562-2570(2006).
[4] HUANG G L, ZHU Y F. Synthesis and photocatalytic performance of ZnWO4 catalyst. Materials Science and Engineering: B, 139, 201-208(2007).
[5] ZHANG C L, ZHANG H L, ZHANG K Y et al. Photocatalytic activity of ZnWO₄: band structure, morphology and surface modification. ACS Applied Materials & Interfaces, 6, 14423-14432(2014).
[6] ASLAM I, CAO C B, TANVEER M et al. A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Advances, 5, 6019-6026(2015).
[7] DE MACEDO O B, DE OLIVEIRA A L M, DOS SANTOS I M G. Zinc tungstate: a review on its application as heterogeneous photocatalyst. Cerâmica, 68, 294-315(2022).
[8] BRIK M G, NAGIRNYI V, KIRM M. Ab-initio studies of the electronic and optical properties of ZnWO4 and CdWO4 single crystals. Materials Chemistry and Physics, 134, 1113-1120(2012).
[9] YU Y, WU S M, ZHU X R et al. Crystal growth, structure, optical properties and laser performance of new tungstate Yb∶Na2La4(WO4)7 crystals. Optical Materials, 111, 110653(2021).
[10] ZHARIKOV E V, ZALDO C, DÍAZ F. Double tungstate and molybdate crystals for laser and nonlinear optical applications. MRS Bulletin, 34, 271-276(2009).
[11] BASIEV T T, SOBOL A A, VORONKO Y K et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers. Optical Materials, 15, 205-216(2000).
[12] NAGORNAYA L L, DANEVICH F A, DUBOVIK A M et al. Tungstate and molybdate scintillators to search for dark matter and double beta decay. IEEE Transactions on Nuclear Science, 56, 2513-2518(2009).
[13] NAGORNAYA L L, DUBOVIK А M, GRINYOV В V et al. Research and development of alkali earth tungstate and molybdate crystal scintillators for search for rare events. Functional materials, 16, 55(2009).
[14] KOBAYASHI M, ISHII M, USUKI Y et al. Cadmium tungstate scintillators with excellent radiation hardness and low background. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 349, 407-411(1994).
[15] THONGTEM S, WANNAPOP S, THONGTEM T. Characterization of CoWO4 nano-particles produced using the spray pyrolysis. Ceramics International, 35, 2087-2091(2009).
[16] LACOMBA-PERALES R, RUIZ-FUERTES J, ERRANDONEA D et al. Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. Europhysics Letters, 83, 37002(2008).
[17] KACZMAREK A M, VAN DEUN R. Rare earth tungstate and molybdate compounds:from 0D to 3D architectures. Chemical Society Reviews, 42, 8835-8848(2013).
[18] SIRIWONG P, THONGTEM T, PHURUANGRAT A et al. Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods. CrystEngComm, 13, 1564-1569(2011).
[19] KRÖGER F A. Some aspects of the luminescence of solids(1948).
[20] KOLOBANOV V N, KAMENSKIKH I A, MIKHAILIN V V et al. Optical and luminescent properties of anisotropic tungstate crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 486, 496-503(2002).
[21] YAN T J, LI L P, TONG W M et al. CdWO4 polymorphs: selective preparation, electronic structures, and photocatalytic activities. Journal of Solid State Chemistry, 184, 357-364(2011).
[22] LOU Z D, HAO J H, COCIVERA M. Luminescence of ZnWO4 and CdWO4 thin films prepared by spray pyrolysis. Journal of Luminescence, 99, 349-354(2002).
[23] MANJÓN F, LÓPEZ-SOLANO J et al. High-pressure structural and lattice dynamical study of HgWO4. Physical Review B, 82(2010).
[24] WU Y G, ZHANG J H, LONG B W et al. The thermodynamic stability, electronic and photocatalytic properties of the ZnWO4(100) surface as predicted by screened hybrid density functional theory. ACS Omega, 6, 15057-15067(2021).
[25] YADAV P, DEV BHUYAN P, ROUT S K et al. Correlation between experimental and theoretical study of scheelite and wolframite-type tungstates. Materials Today Communications, 25, 101417(2020).
[26] HUANG B S, HART J N. DFT study of various tungstates for photocatalytic water splitting. Physical Chemistry Chemical Physics, 22, 1727-1737(2020).
[27] SARKER P, PRASHER D, GAILLARD N et al. Predicting a new photocatalyst and its electronic properties by density functional theory. Journal of Applied Physics, 114, 133508(2013).
[28] WANG J, YANG L J, ZHANG L. Constructed 3D hierarchical micro-flowers CoWO4@Bi2WO6 Z-scheme heterojunction catalyzer: two-channel photocatalytic H2O2 production and antibiotics degradation. Chemical Engineering Journal, 420, 127639(2021).
[29] LI H P, HOU W G, TAO X T et al. Conjugated polyene-modified Bi2MO6 (M=Mo or W) for enhancing visible light photocatalytic activity. Applied Catalysis B: Environmental, 172, 27-36(2015).
[30] JING L Q, ZHOU W, TIAN G H et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chemical Society Reviews, 42, 9509-9549(2013).
[31] SEGALL M D, LINDAN P J D, PROBERT M J et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14, 2717-2744(2002).
[32] ZORINA M L, SYRITSO L F. IR spectra and structures of tungstates. Journal of Applied Spectroscopy, 16, 774-776(1972).
[33] DATURI M, BUSCA G, BOREL M M et al. ChemInform abstract: vibrational and XRD study of the system CdWO4-CdMoO4. ChemInform, 28, 4358-4369(1997).
[34] ÅSBERG DAHLBORG M B, SVENSSON G. HgWO4 synthesized at high pressure and temperature. Acta Crystallographica Section C Crystal Structure Communications, 58, i35-i36(2002).
[35] HAMANN D R, SCHLÜTER M, CHIANG C. Norm-conserving pseudopotentials. Physical Review Letters, 43, 1494-1497(1979).
[36] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868(1996).
[37] HERMAN F. Theoretical investigation of the electronic energy band structure of solids. Reviews of Modern Physics, 30, 102-121(1958).
[38] PAYNE M C, TETER M P, ALLAN D C et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64, 1045-1097(1992).
[39] SRIVASTAVA G P, WEAIRE D. The theory of the cohesive energies of solids. Advances in Physics, 36, 463-517(1987).
[40] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations. Physical Review B, 13, 5188-5192(1976).
[41] MULLIKEN R S. Electronic population analysis on LCAO-MO molecular wave functions. I, 23, 1833-1840(1955).
[42] WANG Y J, WEN D L, SU X. A3PO4 (A = Li, Na, K, Rb, Cs) electronic structure and optical properties: a first-principles study. Journal of Synthetic Crystals, 53, 123-131(2024).
[43] ZHANG B, WANG Y J, QI Y J et al. First principles study on the structure-property relationship of alkali metal molybdates. Journal of Synthetic Crystals, 53, 999-1007(2024).
[44] DING J F, HE Z H, WANG Y J et al. First-principles study on the regulation of optical properties of gallium, indium, and thallium phosphates through sulfur substitution. Journal of Synthetic Crystals, 54, 95-106(2025).
[45] SU X, WANG Y, YANG Z H et al. Experimental and theoretical studies on the linear and nonlinear optical properties of Bi2ZnOB2O6. The Journal of Physical Chemistry C, 117, 14149-14157(2013).
[46] ZHOU X Y, HUANG J B, CAI G M et al. Large optical polarizability causing positive effects on the birefringence of planar-triangular BO3 groups in ternary borates. Dalton Transactions, 49, 3284-3292(2020).
[47] GUO X J, GAO Z L, TAO X T. Recent advances in tellurite molybdate/tungstate crystals. CrystEngComm, 24, 7516-7529(2022).
[48] PALMER B A, MORTE-RÓDENAS A, KARIUKI B M et al. X-ray birefringence from a model anisotropic crystal. The Journal of Physical Chemistry Letters, 2, 2346-2351(2011).
[49] LI Y Q, ZHANG X, ZHOU Y et al. An optically anisotropic crystal with large birefringence arising from cooperative π orbitals. Angewandte Chemie, 61(2022).
[50] YANG H, JUSSILA H, AUTERE A et al. Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photonics, 4, 3023-3030(2017).
[51] CAO L L, PENG G, LIAO W B et al. A microcrystal method for the measurement of birefringence. CrystEngComm, 22, 1956-1961(2020).
[52] TUDI A, HAN S J, YANG Z H et al. Potential optical functional crystals with large birefringence: recent advances and future prospects. Coordination Chemistry Reviews, 459, 214380(2022).
Get Citation
Copy Citation Text
Jian CUI, Zhihao HE, Jiafu DING, Yunjie WANG, Fuhong WAN, Jiajun LI, Xin SU. First-Principles Study on the Relationship Between Structure and Properties of Tungstate with d10 Electron Configuration[J]. Journal of Synthetic Crystals, 2025, 54(5): 841
Category:
Received: Oct. 27, 2024
Accepted: --
Published Online: Jul. 2, 2025
The Author Email: Xin SU (suxin_phy@sina.com)