Laser & Optoelectronics Progress, Volume. 59, Issue 16, 1630005(2022)

Multifeature Automatic Spectral Classification of Plastic Steel Window Based on Machine Learning Model at Molecular Level

Zhen Zhang1, Jifen Wang1、*, Pengwu Lu2, and Zhaokui Fu1
Author Affiliations
  • 1School of Investigation, People’s Public Security University of China, Beijing 100038, China
  • 2School of Public Security Administration, People’s Public Security University of China, Beijing 100038, China
  • show less
    Figures & Tables(11)
    Schematic diagram of support vector machine[11]
    Infrared spectrum diagram of 126 plastic steel window samples
    Overall classification accuracy of Fisher discrimination analysis of plastic steel window samples
    Classification accuracy of Fisher discrimination analysis in full spectrum, functional cluster area, and fingerprint area
    Influence of penalty factor and gamma value on overall classification accuracy of plastic steel window samples
    Classification accuracy of different batches of conch brand plastic steel window
    • Table 1. Basic information of 126 samples

      View table

      Table 1. Basic information of 126 samples

      BrandProduction placeQuantity
      JinpengBinhai,Tianjin27
      HailuoTangshan,Hebei Province30
      Vica plasticSongjiang,Shanghai21
      ShuangfuNan’an,Fujian Province9
      Huaihai profileHuai’an,Jiangsu Province9
      RuihaoSuzhou,Jiangsu Province30
    • Table 2. Parameters of Fourier infrared spectrometer

      View table

      Table 2. Parameters of Fourier infrared spectrometer

      FacilityNicolet 5700 Fourier transform infrared spectrometer
      ParameterNumber of scans64
      Spectral resolution /cm-12
      Measuring range /cm-14000-400
      Dynamic adjustment /s-1130000
      Noise-signal ratio50000∶1
    • Table 3. Principal component analysis scores of Fourier transform infrared spectral data

      View table

      Table 3. Principal component analysis scores of Fourier transform infrared spectral data

      Full rangeFingerprint regionFunctional area
      ComponentEigenvalueCumulative variance contribution rate /%ComponentEigenvalueCumulative variance contribution rate /%ComponentEigenvalueCumulative variance contribution rate /%
      1844.77290.4471202.7186.6281660.35194.336
      252.31296.048225.52997.538230.37698.675
      324.76598.69931.76998.29434.59499.332
      43.80599.10641.50198.93641.98699.615
      52.55199.37951.07999.397
      61.52699.543
      71.14499.665
    • Table 4. Influence of penalty factor and gamma value on overall classification accuracy of plastic steel window samples

      View table

      Table 4. Influence of penalty factor and gamma value on overall classification accuracy of plastic steel window samples

      Penalty factorRBF σ
      0.20.50.811.21.522.53
      187.587.587.590.6290.6290.6290.6293.7596.88
      590.6290.6293.7593.7596.8896.8896.8896.88100
      1090.6293.7596.8896.8896.8896.8896.88100100
      5096.88100100100100100100100100
      100100100100100100100100100100
    • Table 5. SVM model classification results of 6 brand samples

      View table

      Table 5. SVM model classification results of 6 brand samples

      Sample setBrandJinpengHailuoVica plasticShuangfuHuaihai profileRuihaoAccuracy
      Training sampleJinpeng24100
      Hailuo21100
      Vica plastic18100
      Shuangfu3100
      Huaihai profile9100
      Ruihao21100
      Test sampleJinpeng3100
      Hailuo9100
      Vica plastic3100
      Shuangfu3100
      Huaihai profile3100
      Ruihao9100
    Tools

    Get Citation

    Copy Citation Text

    Zhen Zhang, Jifen Wang, Pengwu Lu, Zhaokui Fu. Multifeature Automatic Spectral Classification of Plastic Steel Window Based on Machine Learning Model at Molecular Level[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1630005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Jun. 21, 2021

    Accepted: Aug. 9, 2021

    Published Online: Jul. 22, 2022

    The Author Email: Jifen Wang (wangjifen58@126.com)

    DOI:10.3788/LOP202259.1630005

    Topics