Chinese Journal of Lasers, Volume. 26, Issue 12, 1127(1999)
Theoretic Design of Multilayers for Soft X-rays (1~30 nm)
[1] [1] D. G. Stearns, R. S. Rosen, S. P. Vernon. Multilayer mirror technology for soft-x-ray projection lithography. Appl. Opt., 1993, 32(34):6952~6960
[2] [2] K. M. Skulina, C. S. Alford, R. M. Bionta et al.. Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet. Appl. Opt., 1995, 34(19):3727~3730
[3] [3] D. G. Stearns, R. S. Rosen, S. P. Vernon. Normal-incidence X-ray mirror for 7 nm. Opt. Lett., 1991, 16(16):1283~1285
[4] [4] A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky. Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow-band reflection in the range λ≈4.5 nm. Physica Scripta, 1993, 48:516~520
[5] [5] B. L. Henke, E. M. Gullikson, J. C. Davis. X-ray interactions: Photoionization,scattering, transmission, and reflection at E=50~30000 eV, Z=1~92. Atomic Data and Nuclear Data Tables, 1993, 54(2):198~305
[6] [6] A. E. Rosenbluth. Computer search for layer materials that maximize the reflectivity of X-ray multilayers. Revue de Physique Appliquee, 1988, 23:1599~1621
[7] [7] C. Montcalm, P. A. Kearney, J. M. Slaughter. Survey of Ti-, B-, and Y-based soft X-ray-extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region. Appl. Opt., 1996, 35(25):5134~5147
[8] [8] P. A. Kearney, J. M. Slaughter, C. M. Falco. Materials for multilayer X-ray optics at wavelengths below 100. Opt. Eng., 1991, 30(8):1076~1080
[9] [9] Shi Xu, B. L. Evans. Normal incidence multilayer mirrors for the wavelength range 2.3 to 4.46 nm. J. Modern Optics, 1991, 38(8):1631~1654
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese]. Theoretic Design of Multilayers for Soft X-rays (1~30 nm)[J]. Chinese Journal of Lasers, 1999, 26(12): 1127