Journal of Northwest Forestry University, Volume. 40, Issue 4, 223(2025)

Effects of Climate and Forests on Baseflow

WANG Qiaoqiao1, MA Mengliang1, WANG Yaping1,2, and LI Qiang1,2、*
Author Affiliations
  • 1College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
  • 2Qinling National Forest Ecosystem Research Station, Yangling 712100, Shaanxi, China
  • show less
    References(26)

    [9] [9] HALL F R. Base-flow recessions: A review[J]. Water Resources Research, 1968, 4(5): 973-983.

    [10] [10] TALLAKSEN L M. A review of baseflow recession analysis[J]. Journal of Hydrology, 1995, 165(1/2/3/4): 349-370.

    [11] [11] MAZVIMAVI D, MEIJERINK A M J, STEIN A. Prediction of base flows from basin characteristics: A case study from Zimbabwe[J]. Hydrological Sciences Journal, 2004, 49(4): 703-715.

    [12] [12] GLEESON T, CUTHBERT M, FERGUSON G, et al. Global groundwater sustainability, resources, and systems in the anthropocene[J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 431-463.

    [13] [13] ARNOLD J G, ALLEN P M, MUTTIAH R, et al. Automated base flow separation and recession analysis techniques[J]. Groundwater, 1995, 33(6): 1010-1018.

    [14] [14] TULARAM G A, ILAHEE M. Exponential smoothing method of base flow separation and its impact on continuous loss estimates[J]. American Journal of Environmental Sciences, 2008, 4(2): 136-144.

    [15] [15] BECK H E, VAN DIJK A I J M, MIRALLES D G, et al. Global patterns in base flow index and recession based on streamflow observations from 3394 catchments[J]. Water Resources Research, 2013, 49(12): 7843-7863.

    [16] [16] AHIABLAME L, SHESHUKOV A Y, RAHMANI V, et al. Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri River Basin[J]. Journal of Hydrology, 2017, 551: 188-202.

    [17] [17] TAN X J, LIU B J, TAN X Z. Global changes in baseflow under the impacts of changing climate and vegetation[J]. Water Resources Research, 2020, 56(9): e2020WR027349.

    [18] [18] CHEN H L, LI Q. Testing and applying baseflow approaches to environmental flow needs[J]. Ecological Indicators, 2023, 152: 110363.

    [21] [21] WU J W, MIAO C Y, DUAN Q Y, et al. Dynamics and attributions of baseflow in the semiarid Loess Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(7): 3684-3701.

    [23] [23] PETTYJOHN W A, HENNING R J. Preliminary estimate of ground-water recharge rates, related streamflow and water quality in Ohio[R]. Ohio, USA: Ohio State University Water Resources Center Project Completion Report Number 552, 1979: 323.

    [24] [24] PIGGOTT A R, MOIN S, SOUTHAM C. A revised approach to the UKIH method for the calculation of baseflow[J]. Hydrological Sciences Journal, 2005, 50(5): 911-920.

    [25] [25] BRUTSAERT W. Long-term groundwater storage trends estimated from streamflow records: Climatic perspective[J]. Water Resources Research, 2008, 44(2): W02409.

    [26] [26] LYNE V, HOLLICK M. Stochastic Time-variable rainfall-runoff modeling[C]. Australian National Conference Publication, 1979, 79(10): 89-93.

    [27] [27] ARNOLD J G, ALLEN P M. Automated methods for estimating baseflow and ground water recharge from streamflow Records[J]. Journal of the American Water Resources Association, 1999, 35(2): 411-424.

    [28] [28] CHAPMAN T G. Comment on “Evaluation of automated techniques for base flow and recession analyses” by R. J. Nathan and T. A. McMahon[J]. Water Resources Research, 1991, 27(7): 1783-1784.

    [29] [29] CHAPMAN T, MAXWELL A. Baseflow separation-comparison of numerical methods with tracer experiments[J]. 23rd Hydrology and Water Resources Symposium, 1996: 539-545.

    [30] [30] ECKHARDT K. How to construct recursive digital filters for baseflow separation[J]. Hydrological Processes, 2005, 19(2): 507-515.

    [31] [31] WILCOXON F. Individual comparisons by ranking methods[J]. Biometrics Bulletin, 1945, 1(6): 80.

    [32] [32] MANN H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3): 245.

    [33] [33] KENDALL M G. Rank correlation methods[M]. London: Griffin, 1975.

    [34] [34] FICK S E, HIJMANS R J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315.

    [35] [35] ZOMER R J, XU J C, TRABUCCO A. Version 3 of the global aridity index and potential evapotranspiration database[J]. Scientific Data, 2022, 9: 409.

    [36] [36] NACHTERGAELE F O, VELTHUIZEN H VAN, VERELST L, et al. Harmonized world soil database (version 1.2)[R]. FAO, 2012. https://edepot.wur.nl/197153.

    [37] [37] HUSCROFT J, GLEESON T, HARTMANN J, et al. Compiling and mapping global permeability of the unconsolidated and consolidated earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0)[J]. Geophysical Research Letters, 2018, 45(4): 1897-1904.

    Tools

    Get Citation

    Copy Citation Text

    WANG Qiaoqiao, MA Mengliang, WANG Yaping, LI Qiang. Effects of Climate and Forests on Baseflow[J]. Journal of Northwest Forestry University, 2025, 40(4): 223

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 14, 2024

    Accepted: Sep. 12, 2025

    Published Online: Sep. 12, 2025

    The Author Email: LI Qiang (qiang.li@nwafu.edu.cn)

    DOI:10.3969/j.issn.1001-7461.2025.04.24

    Topics