Chinese Journal of Ship Research, Volume. 20, Issue 3, 339(2025)

Improved self-calibration image enhancement algorithm based on attention mechanism and its application in maritime low-light images

Li SU and Shihao CUI
Author Affiliations
  • College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
  • show less
    Figures & Tables(21)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Experimental environment configuration

      View table
      View in Article

      Table 1. Experimental environment configuration

      配置名称配置参数
      CPU12× Xeon Platinum 8260
      GPUNVIDIA GeForce RTX 3090
      显存24 G
      深度学习框架PyTorch1.8.0
      CUDANVIDIA CUDA 11.3
    • Table 2. Description of evaluation parameters

      View table
      View in Article

      Table 2. Description of evaluation parameters

      评价指标说明
      标准差数值越大,图像质量越好
      自然图像质量评价数值越小,图像失真越小
      平均梯度数值越大,图像越清晰
      信息熵数值越大,图像信息越丰富
    • Table 3. Evaluation results of standard deviation

      View table
      View in Article

      Table 3. Evaluation results of standard deviation

      算法标准差
      图像1图像2图像3图像4图像5图像6
      Retinex21.2321.5728.7538.6124.3322.06
      RUAS23.7123.7037.3749.6028.6723.24
      Retinex-Net24.0524.6131.1553.4926.3428.38
      Zero-DCE21.5422.1229.9742.8427.7424.17
      SCI29.3526.5038.8447.0829.8127.35
      本文算法37.7532.4547.7055.9930.3431.57
    • Table 4. Evaluation results of natural image quality evaluator

      View table
      View in Article

      Table 4. Evaluation results of natural image quality evaluator

      算法自然图像质量评价
      图像1图像2图像3图像4图像5图像6
      Retinex10.7310.6110.7311.6110.3613.08
      RUAS9.129.539.519.279.1511.39
      Retinex-Net9.498.878.259.459.689.61
      Zero-DCE8.839.669.6810.619.539.83
      SCI8.699.137.979.619.139.66
      本文算法8.118.557.568.818.378.62
    • Table 5. Evaluation results of average gradient

      View table
      View in Article

      Table 5. Evaluation results of average gradient

      算法平均梯度
      图像1图像2图像3图像4图像5图像6
      Retinex2.653.455.313.504.313.18
      RUAS6.535.967.316.465.594.23
      Retinex-Net5.926.487.957.144.136.35
      Zero-DCE6.765.856.865.434.685.72
      SCI7.026.5811.579.936.826.44
      本文算法8.478.6412.8412.708.9611.36
    • Table 6. Evaluation results of information entropy

      View table
      View in Article

      Table 6. Evaluation results of information entropy

      算法信息熵
      图像1图像2图像3图像4图像5图像6
      Retinex4.284.124.054.244.263.50
      RUAS4.524.454.625.215.094.17
      Retinex-Net4.714.394.775.184.534.86
      Zero-DCE4.354.204.524.514.464.25
      SCI4.754.484.915.655.274.98
      本文算法5.084.915.005.915.515.84
    • Table 7. Evaluation results of the testing datasets in terms of standard deviation

      View table
      View in Article

      Table 7. Evaluation results of the testing datasets in terms of standard deviation

      算法标准差
      Exclusivey DarkLOL自建海上数据集
      Retinex28.6424.7723.59
      RUAS35.9830.6324.37
      Retinex-Net33.1828.3527.86
      Zero-DCE31.2429.7126.64
      SCI39.3635.1929.24
      本文算法47.3341.2735.82
    • Table 8. Evaluation results of the testing datasets in terms of natural image quality evaluator

      View table
      View in Article

      Table 8. Evaluation results of the testing datasets in terms of natural image quality evaluator

      算法自然图像质量评价
      Exclusivey DarkLOL自建海上数据集
      Retinex11.0914.2910.68
      RUAS9.2612.039.12
      Retinex-Net9.3512.679.23
      Zero-DCE9.9213.899.08
      SCI8.5711.618.66
      本文算法8.049.868.12
    • Table 9. Evaluation results of the testing datasets in terms of average gradient

      View table
      View in Article

      Table 9. Evaluation results of the testing datasets in terms of average gradient

      算法平均梯度
      Exclusivey DarkLOL自建海上数据集
      Retinex5.684.964.03
      RUAS8.166.736.17
      Retinex-Net7.557.256.34
      Zero-DCE7.846.956.56
      SCI10.397.757.85
      本文算法14.659.088.86
    • Table 10. Evaluation results of the testing datasets in terms of information entropy

      View table
      View in Article

      Table 10. Evaluation results of the testing datasets in terms of information entropy

      算法信息熵
      Exclusivey DarkLOL自建海上数据集
      Retinex4.204.064.22
      RUAS4.824.324.49
      Retinex-Net4.884.914.60
      Zero-DCE4.644.734.31
      SCI5.154.934.68
      本文算法5.535.085.10
    • Table 11. Algorithm efficiency analysis

      View table
      View in Article

      Table 11. Algorithm efficiency analysis

      算法运行时间/s
      Retinex15.96
      RUAS16.63
      Retinex-Net17.92
      Zero-DCE16.47
      SCI15.17
      本文算法15.95
    • Table 12. Results of ablation experiment

      View table
      View in Article

      Table 12. Results of ablation experiment

      模型LALAMRNBCNAGIE
      原SCI8.664.92
      SCI-19.325.16
      SCI-29.185.07
      SCI-38.714.98
      SCI-410.725.19
      本文算法10.865.24
    Tools

    Get Citation

    Copy Citation Text

    Li SU, Shihao CUI. Improved self-calibration image enhancement algorithm based on attention mechanism and its application in maritime low-light images[J]. Chinese Journal of Ship Research, 2025, 20(3): 339

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Weapon, Electronic and Information System

    Received: Mar. 20, 2024

    Accepted: --

    Published Online: Jul. 15, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03833

    Topics