Journal of Electronic Science and Technology, Volume. 23, Issue 1, 100291(2025)

Stable computations of the spherically layered media theory with high lossy media by using scaled Bessel functions

Jia-Hui Wang and Bo O. Zhu*
Author Affiliations
  • School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
  • show less
    Figures & Tables(12)
    Single-interface case with out-going wave incidence.
    Single-interface case for standing wave incidence.
    Four-layered media model with plane wave incidence.
    Model of a -polarized dipole source in a multi-layered media with .
    Stability comparison between the conventional and proposed formulations with (a) high lossy media and (b) large layers’ radii.
    Model of an -polarized dipole source in a multi-layered media with .
    Stability comparison between the conventional and proposed formulations with (a) high lossy media and (b) large layers’ radii.
    Stability comparison between the conventional and proposed method under plane wave incidence. of (a) high loss and (b) large radius cases.
    • Table 1. High loss medium.

      View table
      View in Article

      Table 1. High loss medium.

      Layer12345
      a (m)1111520$ \infty $
      $ \varepsilon_r $2$ 1+x^{\prime \prime} $82.92
      $ \mu_r $8$ 1+x^{\prime \prime} $232
    • Table 2. Large radius.

      View table
      View in Article

      Table 2. Large radius.

      Layer12345
      a (m)100$ a_2 $10001200$ \infty $
      $ \varepsilon_r $2$ 1+2i $82.92
      $ \mu_r $8$ 1+2i $232
    • Table 3. Plane wave incidence.

      View table
      View in Article

      Table 3. Plane wave incidence.

      Layer12345
      a (m)12$ a_3 $50$ \infty $
      $ \varepsilon_r $11$ 3+x^{\prime\prime}i $12
      $ \mu_r $13$ 1+x^{\prime\prime}i $12
    • Table 4. Computational efficiency comparison.

      View table
      View in Article

      Table 4. Computational efficiency comparison.

      CasesProposed (s)Traditional (s)
      $ x^{\prime \prime} = 55 $ in Fig. 5(a)0.0385940.030055
      $ x^{\prime \prime} = 57 $ in Fig. 5(a)0.0360000.026603
      $ x^{\prime \prime} = 60 $ in Fig. 5(a)0.0398430.029271
      $ a_2=350.6 $ in Fig. 5(b)0.2917360.182420
      $ a_2=350.7 $ in Fig. 5(b)0.2900190.184975
      $ a_2=350.8 $ in Fig. 5(b)0.3081670.182530
      $ x^{\prime \prime} = 2.90 $ in Fig. 7(a)0.3419950.231653
      $ x^{\prime \prime} = 2.95 $ in Fig. 7(a)0.3896800.238650
      $ x^{\prime \prime} = 3.00 $ in Fig. 7(a)0.3419860.238495
      $ a_2=200 $ in Fig. 7(b)0.4417990.314423
      $ a_2=300 $ in Fig. 7(b)0.4509230.354294
      $ a_2=350 $ in Fig. 7(b)0.2780020.182116
      $ x^{\prime \prime}=7.00 $ in Fig. 8(a)0.0898170.075163
      $ x^{\prime \prime}=8.00 $ in Fig. 8(a)0.0933550.075676
      $ x^{\prime \prime}=8.50 $ in Fig. 8(a)0.0856500.067904
      $ a_3=4.151 $ in Fig. 8(b)0.0866470.071480
      $ a_3=4.152 $ in Fig. 8(b)0.0859750.067385
      $ a_3=4.153 $ in Fig. 8(b)0.0919020.073083
    Tools

    Get Citation

    Copy Citation Text

    Jia-Hui Wang, Bo O. Zhu. Stable computations of the spherically layered media theory with high lossy media by using scaled Bessel functions[J]. Journal of Electronic Science and Technology, 2025, 23(1): 100291

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 5, 2024

    Accepted: Nov. 12, 2024

    Published Online: Apr. 7, 2025

    The Author Email: Bo O. Zhu (bzhu@nju.edu.cn)

    DOI:10.1016/j.jnlest.2024.100291

    Topics