Acta Optica Sinica, Volume. 43, Issue 4, 0416001(2023)
In-Situ Control of Element Structure in Lieb Lattice Plasma Photonic Crystals
[1] Lieb E H. Two theorems on the Hubbard model[J]. Physical Review Letters, 62, 1201-1204(1989).
[2] Bao W B, Zhou B. Floquet topological phase transitions in Lieb lattice with intrinsic spin-orbit coupling[J]. Applied Physics, 10, 24-37(2020).
[3] Biondi M, Blatter G, Schmidt S. Emergent light crystal from frustration and pump engineering[J]. Physical Review B, 98, 104204(2018).
[4] Yu D Y, Yuan L Q, Chen X F. Isolated photonic flatband with the effective magnetic flux in a synthetic space including the frequency dimension[J]. Laser & Photonics Reviews, 14, 2000041(2020).
[5] Taie S, Ozawa H, Ichinose T et al. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice[J]. Science Advances, 1, 1500854(2015).
[6] Feng H F, Liu C, Zhou S et al. Experimental realization of two-dimensional buckled Lieb lattice[J]. Nano Letters, 20, 2537-2543(2020).
[7] Jiang W, Huang H Q, Liu F. A Lieb-like lattice in a covalent-organic framework and its stoner ferromagnetism[J]. Nature Communications, 10, 2207(2019).
[8] Sun K, Gu Z C, Katsura H et al. Nearly flatbands with nontrivial topology[J]. Physical Review Letters, 106, 236803(2011).
[9] Freeney S E, Slot M R, Gardenier T S et al. Electronic quantum materials simulated with artificial model lattices[J]. ACS Nanoscience Au, 2, 198-224(2022).
[10] Mukherjee S, Spracklen A, Choudhury D et al. Observation of a localized flat-band state in a photonic Lieb lattice[J]. Physical Review Letters, 114, 245504(2015).
[11] Myoung N, Park H C, Ramachandran A et al. Flat-band localization and self-collimation of light in photonic crystals[J]. Scientific Reports, 9, 2862(2019).
[12] Zhang X W, Qin Y L, Ren H L et al. Effect of relative lattice intensity of Lieb lattice on propagation of out-of-phase octupole beam[J]. Acta Optica Sinica, 39, 0819001(2019).
[13] Yang J K, Zhang P, Yoshihara M et al. Image transmission using stable solitons of arbitrary shapes in photonic lattices[J]. Optics Letters, 36, 772-774(2011).
[14] Schwartz T, Bartal G, Fishman S et al. Transport and Anderson localization in disordered two-dimensional photonic lattices[J]. Nature, 446, 52-55(2007).
[15] Makasyuk I, Chen Z G, Yang J K. Band-gap guidance in optically induced photonic lattices with a negative defect[J]. Physical Review Letters, 96, 223903(2006).
[16] Mukherjee S, Spracklen A, Choudhury D et al. Modulation-assisted tunneling in laser-fabricated photonic Wannier-Stark ladders[J]. New Journal of Physics, 17, 115002(2015).
[17] Liu J, Mao X Y, Zhong J X et al. Localization, phases and transitions in the three-dimensional extended Lieb lattices[J]. Physical Review B, 102, 174207(2020).
[18] Xia S Q, Ramachandran A, Xia S Q et al. Unconventional flatband line states in photonic Lieb lattices[J]. Physical Review Letters, 121, 263902(2018).
[19] Vicencio R A, Cantillano C, Morales-Inostroza L et al. Observation of localized states in Lieb photonic lattices[J]. Physical Review Letters, 114, 245503(2015).
[20] Xia S Q, Hu Y, Song D H et al. Demonstration of flat-band image transmission in optically induced Lieb photonic lattices[J]. Optics Letters, 41, 1435-1438(2016).
[21] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).
[22] Zhang H F, Zhang H. The extraordinary mode in the three-dimensional magnetized plasma photonic crystals with layer-by-layer lattices containing the function dielectric[J]. The European Physical Journal D, 73, 143(2019).
[23] Tan H Y, Jin C G, Zhuge L J et al. The SLR-dependent negative PBG in 1-D plasma photonic crystal[J]. IEEE Transactions on Plasma Science, 47, 3986-3990(2019).
[24] Sun P P, Zhang R Y, Chen W Y et al. Dynamic plasma/metal/dielectric photonic crystals in the mm-wave region: electromagnetically-active artificial material for wireless communications and sensors[J]. Applied Physics Reviews, 6, 041406(2019).
[25] Liu Y N, Fan W L, Hou X H et al. Annular plasma photonic crystals with different filling ratios in dielectric barrier discharge[J]. Laser & Optoelectronics Progress, 59, 1323002(2022).
[26] Zhang J, Zhao S C, Han B et al. Influence of uniform unmagnetized plasma on electromagnetic wave absorption characteristics[J]. Laser & Optoelectronics Progress, 59, 0319001(2022).
[27] Faith J, Kuo S P, Huang J. Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma[J]. Physical Review E, 55, 1843-1851(1997).
[28] Yang H J, Park S J, Eden J G. Narrowband attenuation at 157 GHz by a plasma photonic crystal[J]. Journal of Physics D, 50, 43LT05(2017).
[29] Matlis E H, Corke T C, Neiswander B et al. Electromagnetic wave transmittance control using self-organized plasma lattice metamaterial[J]. Journal of Applied Physics, 124, 093104(2018).
[30] Wang B, Rodriguez J A, Cappelli M A. 3D woodpile structure tunable plasma photonic crystal[J]. Plasma Sources Science & Technology, 28, 02LT01(2019).
[31] Iwai A, Righetti F, Wang B et al. A tunable double negative device consisting of a plasma array and a negative-permeability metamaterial[J]. Physics of Plasmas, 27, 023511(2020).
[32] Zhang L, Ouyang J T. Experiment and simulation on one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 21, 103514(2014).
[33] Tan H Y, Jin C G, Zhuge L J et al. Air-like plasma frequency in one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 26, 052107(2019).
[34] Zhang W D, Wang H T, Zhao X L et al. Bandgap-tunable device realized by ternary plasma photonic crystals arrays[J]. Physics of Plasmas, 27, 063508(2020).
[35] Yao J F, Yuan C X, Li H et al. 1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission[J]. AIP Advances, 9, 065302(2019).
[36] Fan W L, Hou X H, Tian M et al. Tunable triangular and honeycomb plasma structures in dielectric barrier discharge with mesh-liquid electrodes[J]. Plasma Science and Technology, 015402(2022).
[37] Feng B W, Zhong X X, Zhang Q et al. Effect of duty cycle on pulsed discharge atmospheric pressure plasma: discharge volume and remnant electron density[J]. Plasma Sources Science and Technology, 29, 085017(2020).
[38] Dong L F, Qi Y Y, Liu W Y et al. Measurement of the electron density in a subatmospheric dielectric barrier discharge by spectral line shape[J]. Journal of Applied Physics, 106, 013301(2009).
[39] Huang M S, Xu Y W, Cheng M. Atmospheric pressure and large volume non-equilibrium plasma discharge technology[J]. Laser & Optoelectronics Progress, 58, 0500007(2021).
[40] Feng J Y, Pan Y Y, Li C X et al. Striped superlattice pattern in dielectric barrier discharge[J]. Physics of Plasmas, 27, 063516(2020).
[41] Liu F C, Liu Y N, Liu Q et al. Tunable annular plasma photonic crystals in dielectric barrier discharge[J]. Plasma Sources Science and Technology, 31, 025015(2022).
[42] Fathollahi Khalkhali T, Bananej A. Effect of shape of scatterers and plasma frequency on the complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals[J]. Physics Letters A, 380, 4092-4099(2016).
[43] Sakai O, Sakaguchi T, Tachibana K. Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves[J]. Journal of Applied Physics, 101, 073304(2007).
[44] Huang X Q, Lai Y, Hang Z H et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials[J]. Nature Materials, 10, 582-586(2011).
[45] Li Y, Chan C T, Mazur E. Dirac-like cone-based electromagnetic zero-index metamaterials[J]. Light: Science & Applications, 10, 203(2021).
Get Citation
Copy Citation Text
Mengmeng Jia, Xiaohan Hou, Zhenyu Wu, Fucheng Liu, Weili Fan. In-Situ Control of Element Structure in Lieb Lattice Plasma Photonic Crystals[J]. Acta Optica Sinica, 2023, 43(4): 0416001
Category: Materials
Received: Jul. 18, 2022
Accepted: Sep. 21, 2022
Published Online: Feb. 16, 2023
The Author Email: Fan Weili (fanweili@hbu.edu.cn)