Journal of Synthetic Crystals, Volume. 53, Issue 1, 1(2024)
Research Progress of GaSb Single Crystal
[1] [1] KWAN D, KESARIA M, ANYEBE E A, et al. Recent trends in 8-14 μm type-II superlattice infrared detectors[J]. Infrared Physics & Technology, 2021, 116: 103756.
[2] [2] TING D Z, RAFOL S B, KEO S A, et al. Development of type-II superlattice long wavelength infrared focal plane arrays for land imaging[J]. Infrared Physics & Technology, 2021, 123: 104133.
[3] [3] LI S S, ZHANG J S, CHENG X Z, et al. Research on beam quality control technology of 2 μm antimonide semiconductor laser[J]. Frontiers in Physics, 2022, 10: 1047445.
[4] [4] CHEN F R, AN G, XU Z G. Performance analysis of three-body near-field thermophotovoltaic systems with an intermediate modulator[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2021, 258: 107395.
[5] [5] MAJEED S, AL-RAWI B K, An experimental study of some physical properties on gallium antimonide nanocrystals[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1095: 012003.
[7] [7] GILDENBAT G S, GOLDBERG Y A. Handbook series on semiconductor parameters Vol. 1: Si, Ge, C(Diamond), GaAs, GaP, GaSb, InAs, InP, InSb[M]. Beijing: World Scientific Publishing Company, 1996: 125.
[8] [8] ROGALSKI A. Material considerations for third generation infrared photon detectors[J]. Infrared Physics & Technology, 2007, 50(2/3): 240-252.
[9] [9] LEIFER H N, DUNLAP W C. Some properties of p-type gallium antimonide between 15°K and 925°K[J]. Physical Review, 1954, 95(1): 51-56.
[10] [10] BOITON P, GIACOMETTI N, DUFFAR T, et al. Bridgman crystal growth and defect formation in GaSb[J]. Journal of Crystal Growth, 1999, 206(3): 159-165.
[11] [11] REIJNEN L, BRUNTON R, GRANT I R. GaSb single-crystal growth by vertical gradient freeze[J]. Journal of Crystal Growth, 2005, 275(1/2): e595-e600.
[12] [12] PELOKE J R, STONE R R, YETTER L R. Statistical approach to growth of single crystals of GaSb by horizontal growing techniques[J]. Solid-State Electronics, 1965, 8(11): 861-867.
[13] [13] VOLOSHIN A E, NISHINAGA T, GE P. Perfection and homogeneity of space-grown GaSb∶Te crystals[J]. Crystallography Reports, 2002, 47(1): S136-S148.
[14] [14] ZHU X A, SHEU G, TSAI C T. Finite element modeling of dislocation reduction in GaAs and InP single crystals grown from the VGF process[J]. Finite Elements in Analysis and Design, 2006, 43(1): 81-92.
[15] [15] MARTINEZ R, AMIRHAGHI S, SMITH B, et al. Large diameter ‘ultra-flat’ epitaxy ready GaSb substrates: requirements for MBE grown advanced infrared detectors[C]//SPIE Proceedings, Infrared Technology and Applications XXXVIII. Baltimore, Maryland. SPIE, 2012: 8353.
[16] [16] FURLONG M J, MARTINEZ B, TYBJERG M, et al. Growth and characterization of ≥6” epitaxy-ready GaSb substrates for use in large area infrared imaging applications[C]//SPIE Defense + Security. Proc SPIE 9451, Infrared Technology and Applications XLI, Baltimore, MD, USA. 2015, 9451: 182-189.
[17] [17] MARTINEZ R, TYBJERG M, FLINT P, et al. A study of the preparation of epitaxy-ready polished surfaces of (100) Gallium Antimonide substrates demonstrating ultra-low surface defects for MBE growth[C]//SPIE Defense+Security. Proc SPIE 9819, Infrared Technology and Applications XLII, Baltimore, MD, USA. 2016, 9819: 298-309.
[18] [18] GRAY N W, PRAX A, JOHNSON D, et al. Rapid development of high-volume manufacturing methods for epi-ready GaSb wafers up to 6” diameter for IR imaging applications[C]//SPIE Defense + Security. Proc SPIE 9819, Infrared Technology and Applications XLII, Baltimore, MD, USA. 2016, 9819: 274-284.
[27] [27] YAN B, LIU W H, YU Z J, et al. Temperature dynamic compensation vertical Bridgman method growth of high-quality GaSb single crystals[J]. Journal of Crystal Growth, 2023, 602: 126988.
[28] [28] ZHIRNOV A M, MARICHEV A E, EPOLETOV V S, et al. Technology of nanoplanar surface preparation of GaSb and InP substrates[J]. Journal of Physics: Conference Series, 2020, 1697(1): 012248.
[29] [29] LEVCHENKO I, TOMASHYK V, MALANYCH G, et al. Improvement the InAs, InSb, GaAs and GaSb surface state by nanoscale wet etching[J]. Applied Nanoscience, 2022, 12(4): 1139-1145.
[31] [31] YAN B, LIANG H Y, LIU Y F, et al. Chemical mechanical polishing of GaSb wafers for significantly improved surface quality[J]. Frontiers in Materials, 2021, 8: 773131.
[35] [35] TSUNODA K, MATSUKURA Y, SUZUKI R, et al. Thermal instability of GaSb surface oxide[C]//SPIE Defense + Security. Proc SPIE 9819, Infrared Technology and Applications XLII, Baltimore, MD, USA. 2016, 9819: 210-215.
[36] [36] LIU Z Y, KUECH T F, SAULYS D A. A comparative study of GaSb (100) surface passivation by aqueous and nonaqueous solutions[J]. Applied Physics Letters, 2003, 83(13): 2587-2589.
[37] [37] ROBINSON J A, MOHNEY S E. Characterization of sulfur passivated n-GaSb using transmission electron microscopy and the influence of passivationon ohmic contact resistance[J]. Journal of Applied Physics, 2004, 96(5): 2684-2688.
[38] [38] LEBEDEV M V, LVOVA T V, SHAKHMIN A L, et al. Development of the physicochemical properties of the GaSb(100) surface in ammonium sulfide solutions[J]. Semiconductors, 2019, 53(7): 892-900.
[39] [39] WANG B, ZHIPENGWEI, LI M, et al. The surface and optical properties of passivated GaSb with different passivating agents[J]. Integrated Ferroelectrics, 2013, 146(1): 110-114.
[41] [41] MURAPE D M, EASSA N, NYAMHERE C, et al. Improved GaSb surfaces using a (NH4)2S/(NH4)2SO4 solution[J]. Physica B: Condensed Matter, 2012, 407(10): 1675-1678.
[42] [42] BAKULIN A V, CHUMAKOVA L S, KORCHUGANOV A V, et al. Role of oxygen and fluorine in passivation of the GaSb(111) surface depending on its termination[J]. Crystals, 2022, 12(477): 477.
[43] [43] ALLEN L P, TETREAULT T G, SANTEUFEMIO C, et al. Gas-cluster ion-beam smoothing of chemo-mechanical-polish processed GaSb(100) substrates[J]. Journal of Electronic Materials, 2003, 32(8): 842-848.
[44] [44] KRISHNASWAMI K, VANGALA S R, ZHU B, et al. Epitaxial growth on gas cluster ion-beam processed GaSb substrates using molecular-beam epitaxy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(3): 1455-1459.
[45] [45] KRISHNASWAMI K, VANGALA S R, DAUPLAISE H M, et al. Molecular beam epitaxy on gas cluster ion beam-prepared GaSb substrates: towards improved surfaces and interfaces[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1619-1626.
[49] [49] HAO R T, XU Y Q, ZHOU Z Q, et al. MBE growth of very short period InAs/GaSb type-II superlattices on (0 0 1)GaAs substrates[J]. Journal of Physics D: Applied Physics, 2007, 40(21): 6690-6693.
[52] [52] SHAH Y T. TPV Technology[J]. Advanced Power Generation Systems, 2022: 349-414.
[53] [53] ZHOU Z J, WU H J, JIANG C C, ZHANG B, et al. Theoretical study of selective absorber and narrowband emitter based on metamaterial matched with InGaAsSb cells for an STPV system[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 287: 108016.
[54] [54] ZHANG H H, WANG C L, SHU Y F, et al. Tunability of a broad-band selective metamaterial emitter in thermophotovoltaic systems[J]. International Journal of Heat and Mass Transfer, 2023, 216: 124583.
[55] [55] UTLU Z. Thermophotovoltaic applications in waste heat recovery systems: example of GaSb cell[J]. International Journal of Low-Carbon Technologies, 2020, 15(2): 277-286.
Get Citation
Copy Citation Text
LIU Jingming, YANG Jun, ZHAO Youwen, YANG Cheng’ao, JIANG Dongwei, NIU Zhichuan. Research Progress of GaSb Single Crystal[J]. Journal of Synthetic Crystals, 2024, 53(1): 1
Category:
Received: Sep. 12, 2023
Accepted: --
Published Online: May. 31, 2024
The Author Email: Jingming LIU (liujm10@semi.ac.cn)
CSTR:32186.14.