Infrared and Laser Engineering, Volume. 50, Issue 12, 20210233(2021)

Multi-view SAR target classification method based on principle of maximum entropy

Ning Li1, Junmin Wang1, Wenjie Si2, and Zexun Geng1,3
Author Affiliations
  • 1School of Information Engineering, Pingdingshan University, Pingdingshan 467000, China
  • 2School of Electrical & Control Engineering, Henan University of Urban Construction, Pingdingshan 467000, China
  • 3Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China
  • show less
    References(21)

    [1] El-darymli K, Gill E W, Mcguire P, et al. Automatic target recognition in synthetic aperture radar imagery: a state-of-the-art review[J]. IEEE Access, 4, 6014-6058(2016).

    [2] Anagnostopoulos G C. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors[J]. Nonlinear Analysis, 71, 2934-2939(2009).

    [3] Xie Q, Zhang H. Multi-level SAR image enhancement based on regularization with application to target recognition[J]. Journal of Electronic Measurement and Instrumentation, 32, 157-162(2018).

    [4] Cui Z Y, Cao Z J, Yang J Y, et al. Target recognition in synthetic aperture radar via non-negative matrix factorization[J]. IET Radar, Sonar and Navigation, 9, 1376-1385(2015).

    [5] Dong G G, Kuang G Y, Wang N, et al. SAR target recognition via joint sparse representation of monogenic signal[J]. IEEE Journal of Selected Topics Applied Earth Observation and Remote Sensing, 8, 3316-3328(2015).

    [6] Ding B Y, Wen G J, Yu L S, et al. Matching of attributed scattering center and its application to synthetic aperture radar automatic target recognition[J]. Journal of Radar, 6, 157-166(2017).

    [7] Liu H C, Li S T. Decision fusion of sparse representation and support vector machine for SAR image target recognition[J]. Neurocomputing, 113, 97-104(2013).

    [8] [8] Thiagaraianm J, Ramamurthy K, Knee P P, et al. Sparse representations f automatic target classification in SAR images[C]4 th Communications, Control Signal Processing, 2010: 1–4.

    [9] Zhang K, Wang Z, Hua L, et al. Application research of view high speed detection algorithm of small field based on sparse features[J]. Chinese Journal of Scientific Instrument, 39, 179-189(2018).

    [10] Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 4806-4817(2016).

    [11] Liu S K, Yang J. Target recognition in synthetic aperture radar images via joint multifeature decision fusion[J]. Journal of Applied Remote Sensing, 12, 016012(2018).

    [12] Ding B Y, Wen G J, Huang X H, et al. Target recognition in SAR images by exploiting the azimuth sensitivity[J]. Remote Sensing Letters, 8, 121-130(2017).

    [13] Huan R H, Pan Y. Target recognition of multi-aspect SAR images with fusion strategies[J]. Progress In Electromagnetics Research Symposium, 134, 267-288(2013).

    [14] Zhang H C, Nasrabadi N M, Zhang Y, et al. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systtems, 48, 2481-2497(2012).

    [15] Cao Z J, Xu L, Feng J L. Automatic target recognition with joint sparse representation of heterogeneous multi-view SAR images over a locally adaptive dictionary[J]. Signal Processing, 126, 127-134(2016).

    [16] Ding B Y, Wen G J. Exploiting multi-view SAR images for robust target recognition[J]. Remote Sensing, 9, 1150(2017).

    [17] Cai D R, Song Y Z. Joint decision of multi-view SAR images with discrimination analysis with application to SAR ATR[J]. Journal of CAEIT, 14, 37-42(2018).

    [18] Miao X Y, Shan Y P. SAR target recognition via sparse representation of multi view SAR images with correlation analysis[J]. Journal of Electromagnetic Waves and Applications, 33, 897-910(2019).

    [19] Cai D R, Zhang T. SAR target recognition based on joint use of multi-resolution representations[J]. Journal of Electronic Measurement and Instrumentation, 32, 71-77(2018).

    [20] Li A G, Wang B N. The concept of a new nonlinear correlation information entropy and its properties and applications[J]. Information and Control, 40, 401-408(2011).

    [21] Wang H D, Yao X. Objective reduction based on nonlinear correlation information entropy[J]. Methodologies and Application, 20, 2393-2407(2016).

    Tools

    Get Citation

    Copy Citation Text

    Ning Li, Junmin Wang, Wenjie Si, Zexun Geng. Multi-view SAR target classification method based on principle of maximum entropy[J]. Infrared and Laser Engineering, 2021, 50(12): 20210233

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: May. 25, 2021

    Accepted: --

    Published Online: Feb. 9, 2022

    The Author Email:

    DOI:10.3788/IRLA20210233

    Topics