Journal of Synthetic Crystals, Volume. 51, Issue 3, 523(2022)

Research Progress of Ultra-Wide Band Gap Semiconductor Ga2O3-Based X-Ray Detectors

LI Zhiwei*, TANG Huili, XU Jun, and LIU Bo
Author Affiliations
  • [in Chinese]
  • show less
    References(70)

    [1] [1] ROWLANDS J A. Material change for X-ray detectors[J]. Nature, 2017, 550(7674): 47-48.

    [2] [2] WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5): 333-339.

    [3] [3] PAN W C, YANG B, NIU G D, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection[J]. Advanced Materials, 2019, 31(44): 1904405.

    [4] [4] SPAHN M. X-ray detectors in medical imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 731: 57-63.

    [5] [5] SHIKHALIEV P M. Tilted angle CZT detector for photon counting/energy weighting X-ray and CT imaging[J]. Physics in Medicine and Biology, 2006, 51(17): 4267-4287.

    [6] [6] PAN W C, WU H D, LUO J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit[J]. Nature Photonics, 2017, 11(11): 726-732.

    [7] [7] HOHEISEL M, ARQUES M, CHABBAL J, et al. Amorphous silicon X-ray detectors[J]. Journal of Non-Crystalline Solids, 1998, 227/228/229/230: 1300-1305.

    [8] [8] NEGRE J P, RUBBELYNCK C. Application of fast CVD diamond photoconductor detectors to MeV X-ray metrology for the AIRIX flash radiographic facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 451(3): 638-650.

    [9] [9] LI Q, BEILICKE M, LEE K E, et al. Study of thick CZT detectors for X-ray and Gamma-ray astronomy[J]. Astroparticle Physics, 2011, 34(10): 769-777.

    [10] [10] KASAP S O. X-ray sensitivity of photoconductors: application to stabilized a-Se[J]. Journal of Physics D: Applied Physics, 2000, 33(21): 2853-2865.

    [11] [11] LEE S C, JEON H B, KANG K H, et al. Study of silicon photodiode performance for X-ray detector in cargo system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 912: 350-353.

    [12] [12] KONG W Y, WU G A, WANG K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731.

    [13] [13] DYNDAL K, ZARZYCKI A, ANDRYSIEWICZ W, et al. CuO-Ga2O3 thin films as a gas-sensitive material for acetone detection[J]. Sensors (Basel, Switzerland), 2020, 20(11): 3142.

    [14] [14] OGITA M, HIGO K, NAKANISHI Y, et al. Ga2O3 thin film for oxygen sensor at high temperature[J]. Applied Surface Science, 2001, 175/176: 721-725.

    [15] [15] GAO X, XIA Y D, JI J F, et al. Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films[J]. Applied Physics Letters, 2010, 97(19): 193501.

    [16] [16] MYKHAYLYK V B, KRAUS H, KAPUSTIANYK V, et al. Low temperature scintillation properties of Ga2O3[J]. Applied Physics Letters, 2019, 115(8): 081103.

    [19] [19] TIE S J, ZHAO W, XIN D Y, et al. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(31): e2001981.

    [20] [20] WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 2017, 11(5): 315-321.

    [21] [21] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91.

    [22] [22] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301.

    [23] [23] CHEN J W, TANG H L, LIU B, et al. High-performance X-ray detector based on single-crystal β-Ga2O3∶Mg[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2879-2886.

    [24] [24] DEVANATHAN R, CORRALES L R, GAO F, et al. Signal variance in gamma-ray detectors: a review[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 565(2): 637-649.

    [25] [25] ZHANG Y X, LIU Y C, XU Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection[J]. Nature Communications, 2020, 11: 2304.

    [26] [26] LIU J Y, SHABBIR B, WANG C J, et al. Perovskite X-ray detectors: flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots[J]. Advanced Materials, 2019, 31(30): 1970214.

    [27] [27] GUO J, XU Y D, YANG W H, et al. High-stability flexible X-ray detectors based on lead-free halide perovskite Cs2TeI6 films[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23928-23935.

    [28] [28] LI J C, DU X Y, NIU G D, et al. Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 989-996.

    [29] [29] LI L Q, LIU X, ZHANG H J, et al. Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7522-7528.

    [30] [30] XU Q, SHAO W Y, LI Y, et al. High-performance surface barrier X-ray detector based on methylammonium lead tribromide single crystals[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9679-9684.

    [31] [31] LI Y, LIU J Y, SU X, et al. High performance broadband photo and soft X-ray detectors based on two dimensional CrSiTe3[J]. Journal of Materials Chemistry C, 2020, 8(20): 6659-6666.

    [32] [32] YAO L, NIU G D, YIN L X, et al. Bismuth halide perovskite derivatives for direct X-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(4): 1239-1243.

    [33] [33] ZHANG H J, WANG F B, LU Y F, et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals[J]. Journal of Materials Chemistry C, 2020, 8(4): 1248-1256.

    [34] [34] ZHANG B B, LIU X, XIAO B, et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3[J]. The Journal of Physical Chemistry Letters, 2020, 11(2): 432-437.

    [35] [35] LI Z, CHANG S Q, ZHANG H Q, et al. Flexible lead-free X-ray detector from metal-organic frameworks[J]. Nano Letters, 2021, 21(16): 6983-6989.

    [36] [36] TANG H L, HE N T, ZHANG H, et al. Inhibition of volatilization and polycrystalline cracking, and the optical properties of β-Ga2O3 grown by the EFG method[J]. Cryst Eng Comm, 2020, 22(5): 924-931.

    [37] [37] VON WENCKSTERN H. Group-Ⅲ sesquioxides: growth, physical properties and devices[J]. Advanced Electronic Materials, 2017, 3(9): 1600350.

    [38] [38] YOSHIOKA S, HAYASHI H, KUWABARA A, et al. Structures and energetics of Ga2O3 polymorphs[J]. Journal of Physics: Condensed Matter, 2007, 19(34): 346211.

    [39] [39] HE H Y, ORLANDO R, BLANCO M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases[J]. Physical Review B, 2006, 74(19): 195123.

    [40] [40] KROLL P, DRONSKOWSKI R, MARTIN M. Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga-O-N[J]. Journal of Materials Chemistry, 2005, 15(32): 3296.

    [41] [41] PLAYFORD H Y, HANNON A C, BARNEY E R, et al. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction[J]. Chemistry-A European Journal, 2013, 19(8): 2803-2813.

    [42] [42] ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722.

    [43] [43] HE H Y, BLANCO M A, PANDEY R. Electronic and thermodynamic properties of β-Ga2O3[J]. Applied Physics Letters, 2006, 88(26): 261904.

    [44] [44] LITIMEIN F, RACHED D, KHENATA R, et al. FPLAPW study of the structural, electronic, and optical properties of Ga2O3: monoclinic and hexagonal phases[J]. Journal of Alloys and Compounds, 2009, 488(1): 148-156.

    [45] [45] PEELAERS H, VAN DE WALLE C G. Brillouin zone and band structure of β-Ga2O3[J]. Physica Status Solidi (b), 2015, 252(4): 828-832.

    [46] [46] VARLEY J B, WEBER J R, JANOTTI A, et al. Oxygen vacancies and donor impurities in β-Ga2O3[J]. Applied Physics Letters, 2010, 97(14): 142106.

    [47] [47] WANG V, XIAO W, KANG L J, et al. Sources ofn-type conductivity in GaInO3[J]. Journal of Physics D: Applied Physics, 2015, 48(1): 015101.

    [48] [48] ZHANG H, TANG H L, HE N T, et al. Growth and physical characterization of high resistivity Fe∶β-Ga2O3 crystals[J]. Chinese Physics B, 2020, 29(8): 087201.

    [49] [49] WONG M H, LIN C H, KURAMATA A, et al. Acceptor doping of β-Ga2O3 by Mg and N ion implantations[J]. Applied Physics Letters, 2018, 113(10): 102103.

    [50] [50] GUO D Y, AN Y H, CUI W, et al. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films[J]. Scientific Reports, 2016, 6: 25166.

    [51] [51] SAIKUMAR A K, NEHATE S D, SUNDARAM K B. Review: RF sputtered films of Ga2O3[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3064-Q3078.

    [52] [52] KNEI M, HASSA A, SPLITH D, et al. Tin-assisted heteroepitaxial PLD-growth of κ-Ga2O3 thin films with high crystalline quality[J]. APL Materials, 2018, 7(2): 022516.

    [53] [53] ALEMA F, HERTOG B, OSINSKY A, et al. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD[J]. Journal of Crystal Growth, 2017, 475: 77-82.

    [54] [54] TANG H L, HE N T, ZHU Z C, et al. Temperature-dependence of X-ray excited luminescence of β-Ga2O3 single crystals[J]. Applied Physics Letters, 2019, 115(7): 071904.

    [55] [55] ZHOU L D, LU X, CHEN L, et al. Leakage current by poole-Frenkel emission in Pt Schottky contacts on 201 β-Ga2O3 grown by edge-defined film-fed growth[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3054-Q3057.

    [56] [56] HE N T, XU M X, TANG H L, et al. Scintillation properties of β-Ga2O3 single crystal excited by α-ray[J]. IEEE Transactions on Nuclear Science, 2020, 67(1): 400-404.

    [57] [57] HE N T, TANG H L, LIU B, et al. Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by floating zone method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 9-12.

    [58] [58] BALDINI M, GALAZKA Z, WAGNER G. Recent progress in the growth of β-Ga2O3 for power electronics applications[J]. Materials Science in Semiconductor Processing, 2018, 78: 132-146.

    [59] [59] IRMSCHER K, GALAZKA Z, PIETSCH M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Applied Physics, 2011, 110(6): 063720.

    [60] [60] HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41.

    [66] [66] NEAL A T, MOU S, RAFIQUE S, et al. Donors and deep acceptors in β-Ga2O3[J]. Applied Physics Letters, 2018, 113(6): 062101.

    [67] [67] ZHANG Z, FARZANA E, AREHART A R, et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy[J]. Applied Physics Letters, 2016, 108(5): 052105.

    [68] [68] POLYAKOV A Y, SMIRNOV N B, SHCHEMEROV I V, et al. Electrical properties of bulk semi-insulating β-Ga2O3 (Fe)[J]. Applied Physics Letters, 2018, 113(14): 142102.

    [69] [69] LU X, ZHOU L D, CHEN L, et al. Schottky X-ray detectors based on a bulk β-Ga2O3 substrate[J]. Applied Physics Letters, 2018, 112(10): 103502.

    [70] [70] HANY I, YANG G, CHUNG C C. Fast X-ray detectors based on bulk β-Ga2O3 (Fe)[J]. Journal of Materials Science, 2020, 55(22): 9461-9469.

    [71] [71] CHEN J W, TANG H L, LI Z W, et al. Highly sensitive X-ray detector based on a β-Ga2O3∶Fe single crystal[J]. Optics Express, 2021, 29(15): 23292-23299.

    [72] [72] ZHOU L D, CHEN L, RUAN J L, et al. Pulsed X-ray detector based on Fe doped β-Ga2O3 single crystal[J]. Journal of Physics D: Applied Physics, 2021, 54(27): 274001.

    [73] [73] LI Z W, CHEN J W, TANG H L, et al. Band gap engineering in β-Ga2O3 for a high-performance X-ray detector[J]. ACS Applied Electronic Materials, 2021, 3(10): 4630-4639.

    [74] [74] LIANG H L, CUI S J, SU R, et al. Flexible X-ray detectors based on amorphous Ga2O3 thin films[J]. ACS Photonics, 2019, 6(2): 351-359.

    [75] [75] CHEN M N, ZHANG Z P, ZHAN R Z, et al. Fast-response X-ray detector based on nanocrystalline Ga2O3 thin film prepared at room temperature[J]. Applied Surface Science, 2021, 554: 149619.

    [76] [76] ZHOU L D, LU X, WU J, et al. Self-powered fast-response X-ray detectors based on vertical GaN p-n diodes[J]. IEEE Electron Device Letters, 2019, 40(7): 1044-1047.

    Tools

    Get Citation

    Copy Citation Text

    LI Zhiwei, TANG Huili, XU Jun, LIU Bo. Research Progress of Ultra-Wide Band Gap Semiconductor Ga2O3-Based X-Ray Detectors[J]. Journal of Synthetic Crystals, 2022, 51(3): 523

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 10, 2021

    Accepted: --

    Published Online: Apr. 21, 2022

    The Author Email: LI Zhiwei (1930966@tongji.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics