NUCLEAR TECHNIQUES, Volume. 46, Issue 2, 020201(2023)

Study of achromatic beamline design for laser-driven femtosecond electron beams

Jungao ZHU1, Haiyang LU3、*, Yuan ZHAO3, Meifu LAI3, Yongli GU3, Shixiang XU2、**, Meng WEN4, and Cangtao ZHOU3、***
Author Affiliations
  • 1College of Applied Sciences, Shenzhen University, Shenzhen 518060, China
  • 2Shenzhen Key Lab of Micro-Nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 3Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
  • 4Department of Physics, Hubei University, Wuhan 430062, China
  • show less
    References(21)

    [1] PEI Minjie, QI Dalong, QI Yingpeng et al. Ultrafast electron diffraction technique and its applications[J]. Acta Physica Sinica, 64, 034101(2015).

    [2] Sciaini G, Miller R J D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics[J]. Reports on Progress in Physics, 74, 096101(2011).

    [3] LIANG Wenxi, ZHU Pengfei, WANG Xuan et al. Ultrafast dynamics of thin-film aluminum observed by ultrafast electron diffraction[J]. Acta Physica Sinica, 58, 5546-5551(2009).

    [4] Li R K, Tang C X, Du Y C et al. Experimental demonstration of high quality MeV ultrafast electron diffraction[J]. Review of Scientific Instruments, 80, 083303(2009).

    [5] Fu F C, Wang R, Zhu P F et al. Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures[J]. Physical Review Letters, 114, 114801(2015).

    [6] Kim H W, Vinokurov N A, Baek I H et al. Towards jitter-free ultrafast electron diffraction technology[J]. Nature Photonics, 14, 245-249(2020).

    [7] He A, Willeke F, Yu L H et al. Design of low energy bunch compressors with space charge effects[J]. Physical Review Special Topics - Accelerators and Beams, 18, 014201(2015).

    [8] Qi F F, Ma Z R, Zhao L R et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor[J]. Physical Review Letters, 124, 134803(2020).

    [9] Faure J, Glinec Y, Pukhov A et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).

    [10] Debus A D, Bussmann M, Schramm U et al. Electron bunch length measurements from laser-accelerated electrons using single-shot THz time-domain interferometry[J]. Physical Review Letters, 104, 084802(2010).

    [11] He Z H, Thomas A G R, Beaurepaire B et al. Electron diffraction using ultrafast electron bunches from a laser-Wakefield accelerator at kHz repetition rate[J]. Applied Physics Letters, 102, 064104(2013).

    [12] Wang X M, Zgadzaj R, Fazel N et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 4, 1988(2013).

    [13] Antipov S, Baturin S, Jing C et al. Experimental demonstration of energy-chirp compensation by a tunable dielectric-based structure[J]. Physical Review Letters, 112, 114801(2014).

    [14] Shpakov V, Anania M P, Bellaveglia M et al. Longitudinal phase-space manipulation with beam-driven plasma wakefields[J]. Physical Review Letters, 122, 114801(2019).

    [15] Wu Y P, Hua J F, Zhou Z et al. Phase space dynamics of a plasma Wakefield dechirper for energy spread reduction[J]. Physical Review Letters, 122, 204804(2019).

    [16] Tokita S, Hashida M, Inoue S et al. Single-shot femtosecond electron diffraction with laser-accelerated electrons: experimental demonstration of electron pulse compression[J]. Physical Review Letters, 105, 215004(2010).

    [17] Faure J, van der Geer B, Beaurepaire B et al. Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction[J]. Physical Review Accelerators and Beams, 19, 021302(2016).

    [18] Lundh O, Lim J, Rechatin C et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator[J]. Nature Physics, 7, 219-222(2011).

    [19] Faure J, Rechatin C, Norlin A et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 444, 737-739(2006).

    [20] Ghaith A, Oumbarek D, Kitégi C et al. Permanent magnet-based quadrupoles for plasma acceleration sources[J]. Instruments, 3, 27(2019).

    [21] Zhu J G, Wu M J, Liao Q et al. Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport[J]. Physical Review Accelerators and Beams, 22, 061302(2019).

    Tools

    Get Citation

    Copy Citation Text

    Jungao ZHU, Haiyang LU, Yuan ZHAO, Meifu LAI, Yongli GU, Shixiang XU, Meng WEN, Cangtao ZHOU. Study of achromatic beamline design for laser-driven femtosecond electron beams[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 10, 2022

    Accepted: --

    Published Online: Mar. 2, 2023

    The Author Email:

    DOI:10.11889/j.0253-3219.2023.hjs.46.020201

    Topics