Acta Optica Sinica, Volume. 43, Issue 15, 1515001(2023)

Three-Dimensional Object Detection Technology Based on Point Cloud Data

Jianan Li1,2, Ze Wang1, and Tingfa Xu1,2,3、*
Author Affiliations
  • 1School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
  • 3Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401135, China
  • show less
    Figures & Tables(11)
    Structural differences between image and point cloud. (a) Regular structure; (b) irregular structure
    Disorder of point cloud data
    Comparision of point cloud feature extraction methods. (a) Voxel-based point cloud feature extraction method; (b) point-based point cloud feature extraction method; (c) graph-based point cloud feature extraction method
    Milestone timeline of 3D object detection in point clouds
    Pipeline of voxel-based object detection method
    Pipeline of point-based object detection method
    Pipeline of graph-based object detection method
    Samples of outdoor 3D object detection datasets. (a) KITTI; (b) Waymo; (c) nuScenes; (d) STCrowd
    • Table 1. Comparison of commonly used 3D object detection datasets

      View table

      Table 1. Comparison of commonly used 3D object detection datasets

      DatasetSceneYearData type3D bounding boxCategory
      KITTI7Outdoor2012Point cloud +image2×1058
      Waymo61Outdoor2019Point cloud +image1.2×1064
      nuScenes62Outdoor2019Point cloud +image4×10523
      STCrowd63Outdoor2022Point cloud +image2.19×1051
      NYU-Depth64Indoor2012Image+depth map3.5×10440
      SUN3D65Indoor2013Image+depth map
      SUN RGB-D66Indoor2015Image+depth map5.8×104800
      ScanNet67Indoor2017Image+depth map
    • Table 2. Average precision (pAP) comparison of point cloud object detection methods on KITTI dataset

      View table

      Table 2. Average precision (pAP) comparison of point cloud object detection methods on KITTI dataset

      TypeMethodCarPedestrianCyclist
      EasyModerateHardEasyModerateHardEasyModerateHard
      Voxel-basedVoxelNet1677.4765.1157.7339.4833.6931.5061.2248.3644.37
      SECOND1784.6575.9668.7145.3135.5233.1475.8360.8253.67
      PointPillars1882.5874.3168.9951.4541.9238.8977.1058.6551.92
      PartA^27087.8178.4973.5153.1043.3540.0679.1763.5256.93
      TANet7184.3975.9468.8253.7244.3440.4975.7059.4452.53
      SegVoxelNet7286.0476.1370.76
      CIA-SSD2189.5980.2872.87
      Voxel R-CNN1990.9081.6277.06
      SE-SSD2291.4982.5477.15
      VoTr-TSD2589.9082.0979.14
      CT3D2687.8381.7777.16
      VoxSeT2788.5382.0677.46
      Point-basedPoint R-CNN3886.9675.6470.7047.9839.3736.0174.9658.8252.53
      3DSSD3988.3679.5774.5554.6444.2740.2382.4864.1056.90
      IA-SSD(single)4088.8780.3275.1047.9041.0337.9882.3666.2559.70
      IA-SSD(multi)4088.3480.1375.0446.5139.0335.6178.3561.9455.70
      SASA4188.7682.1677.16
      Graph-basedPoint-GNN4288.3379.4772.2951.9243.7740.1478.663.4857.08
      PC R-GNN4389.1379.9075.54
      GraR-Vol4491.8983.2777.78
      GraR-Po4491.7983.1877.98
      GraR-Vo4491.2982.7777.20
      GraR-Pi4490.9482.4277.00
      Voxel+point-basedFP R-CNN4585.2977.4070.24
      STD4687.9579.7175.0953.2942.4738.3578.6961.5955.30
      PV R-CNN4790.2581.4376.8252.1743.2940.2978.6063.7157.65
      SA-SSD4888.7579.7974.16
      ImpDet7388.3982.1476.98
      Multimode-basedMV3D5274.9763.6354.00
      F-PointNet5082.1969.7960.5950.5342.1538.0872.2756.1249.01
      AVOD5376.3966.4760.2336.1027.8625.7657.1942.0838.29
      ContFuse5883.6868.7861.67
      MMF5988.4077.4370.22
    • Table 3. Average precision (pAP) comparison of point cloud object detection methods on Waymo dataset

      View table

      Table 3. Average precision (pAP) comparison of point cloud object detection methods on Waymo dataset

      LevelMethod3DBEV
      Overall0-30 m30-50 m50 m-InfOverall0-30 m30-50 m50 m-Inf
      LEVEL_1(IoU is 0.7)PointPillars1856.6281.0151.7527.9475.5792.1074.0655.47
      MVF7462.9386.3060.0236.0280.4093.5979.2163.09
      PV R-CNN4770.3091.9269.2142.1782.9697.3582.9964.97
      Pillar-OD7569.8088.5366.5042.9387.1195.7884.8772.12
      Voxel R-CNN1975.5992.4974.0953.1588.1997.6287.3477.70
      LiDAR R-CNN7676.0092.1074.6054.5090.1097.0089.5078.90
      CenterPoint2376.8692.2775.3154.1091.6197.1991.0582.06
      PVGNet7774.00
      VoTR-TSD2574.9592.2873.3651.09
      CT3D2676.3092.5175.0755.3690.5097.6488.0678.89
      Pyramid-PV7876.3092.6774.9154.54
      VoxSeT2776.0291.1375.7554.2389.1295.1287.3677.78
      GraR-Ce4480.7793.5979.6860.4192.6997.5692.1584.13
      ImpDet7374.3891.9872.8649.13
      LEVEL_2(IoU is 0.7)PV R-CNN4765.3691.5865.1336.4677.4594.6480.3955.39
      Voxel R-CNN1966.5991.7467.8940.8081.0796.9981.3763.26
      LiDAR R-CNN7668.3091.3068.5042.4081.7094.3082.3065.80
      CenterPoint2369.0991.4169.4342.4085.4396.3586.4470.06
      VoTR-TSD2565.91
      CT3D2669.0491.7668.9342.6081.7497.0582.2264.34
      Pyramid-PV7867.23
      VoxSeT2768.1691.0367.1342.2376.1394.1381.7858.13
      GraR-Ce4472.5592.7573.7447.8486.5696.7987.5972.06
    Tools

    Get Citation

    Copy Citation Text

    Jianan Li, Ze Wang, Tingfa Xu. Three-Dimensional Object Detection Technology Based on Point Cloud Data[J]. Acta Optica Sinica, 2023, 43(15): 1515001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 29, 2023

    Accepted: Jun. 5, 2023

    Published Online: Aug. 3, 2023

    The Author Email: Xu Tingfa (ciom_xtf1@bit.edu.cn)

    DOI:10.3788/AOS230745

    Topics