Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 7, 749(2020)

Research progress of liquid crystal microlens arrays

CAI Wen-feng*, LI Yi-fei, JIANG Hao-dong, LUO Dan, and LIU Yan-jun
Author Affiliations
  • [in Chinese]
  • show less
    References(74)

    [1] [1] HUANG H Y, ZHAO Y. Optofluidic lenses for 2D and 3D imaging [J]. Journal of Micromechanics and Microengineering, 2019, 29(7): 073001.

              HUANG H Y, ZHAO Y. Optofluidic lenses for 2D and 3D imaging [J]. Journal of Micromechanics and Microengineering, 2019, 29(7): 073001.

    [2] [2] XU S, LI Y, LIU Y F, et al. Fast-response liquid crystal microlens [J]. Micromachines, 2014, 5(2): 300-324.

              XU S, LI Y, LIU Y F, et al. Fast-response liquid crystal microlens [J]. Micromachines, 2014, 5(2): 300-324.

    [3] [3] LIN Y H, WANG Y J, RESHETNYAK V. Liquid crystal lenses with tunable focal length [J]. Liquid Crystals Reviews, 2018, 5(2): 111-143.

              LIN Y H, WANG Y J, RESHETNYAK V. Liquid crystal lenses with tunable focal length [J]. Liquid Crystals Reviews, 2018, 5(2): 111-143.

    [4] [4] KIM S U, NA J H, KIM C, et al. Design and fabrication of liquid crystal-based lenses [J]. Liquid Crystals, 2017, 44(12/13): 2121-2132.

              KIM S U, NA J H, KIM C, et al. Design and fabrication of liquid crystal-based lenses [J]. Liquid Crystals, 2017, 44(12/13): 2121-2132.

    [5] [5] ALGORRI J F, ZOGRAFOPOULOS D C, URRUCHI V, et al. Recent advances in adaptive liquid crystal lenses [J]. Crystals, 2019, 9(5): 272.

              ALGORRI J F, ZOGRAFOPOULOS D C, URRUCHI V, et al. Recent advances in adaptive liquid crystal lenses [J]. Crystals, 2019, 9(5): 272.

    [6] [6] WANG J G. Research progress of liquid crystal microlens array [J]. Laser & Optoelectronics Progress, 2013, 50(1): 010005. (in Chinese)

              WANG J G. Research progress of liquid crystal microlens array [J]. Laser & Optoelectronics Progress, 2013, 50(1): 010005. (in Chinese)

    [7] [7] LIN Y H, CHEN M S. A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses [J]. Journal of Display Technology, 2012, 8(7): 401-404.

              LIN Y H, CHEN M S. A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses [J]. Journal of Display Technology, 2012, 8(7): 401-404.

    [8] [8] LIN H C, COLLINGS N, CHEN M S, et al. A holographic projection system with an electrically tuning and continuously adjustable optical zoom [J] Optics Express, 2012, 20(25): 27222-27229.

              LIN H C, COLLINGS N, CHEN M S, et al. A holographic projection system with an electrically tuning and continuously adjustable optical zoom [J] Optics Express, 2012, 20(25): 27222-27229.

    [9] [9] DE BOER D K G, HIDDINK M G H, SLUIJTER M, et al. Switchable lenticular based 2D/3D displays [C]//Proceedings of SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV. San Jose, CA: SPIE, 2007: 64900R.

              DE BOER D K G, HIDDINK M G H, SLUIJTER M, et al. Switchable lenticular based 2D/3D displays [C]//Proceedings of SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV. San Jose, CA: SPIE, 2007: 64900R.

    [10] [10] WANG X H, REN H W, WANG Q H. Polymer network liquid crystal (PNLC) lenticular microlens array with no surface treatment [J]. Journal of Display Technology, 2016, 12(8): 773-778.

              WANG X H, REN H W, WANG Q H. Polymer network liquid crystal (PNLC) lenticular microlens array with no surface treatment [J]. Journal of Display Technology, 2016, 12(8): 773-778.

    [11] [11] SHI L Y, SRIVASTAVA A K, WAI TAM A M, et al. 2D-3D switchable display based on a passive polymeric lenticular lens array and electrically suppressed ferroelectric liquid crystal [J]. Optics Letters, 2017, 42(17): 3435-3438.

              SHI L Y, SRIVASTAVA A K, WAI TAM A M, et al. 2D-3D switchable display based on a passive polymeric lenticular lens array and electrically suppressed ferroelectric liquid crystal [J]. Optics Letters, 2017, 42(17): 3435-3438.

    [12] [12] PARK M K, PARK H, JOO K I, T, et al. Polarization-dependent liquid crystalline polymeric lens array with aberration-improved aspherical curvature for low 3D crosstalk in 2D/3D switchable mobile multi-view display [J]. Optics Express, 2018, 26(16): 20281-20297.

              PARK M K, PARK H, JOO K I, T, et al. Polarization-dependent liquid crystalline polymeric lens array with aberration-improved aspherical curvature for low 3D crosstalk in 2D/3D switchable mobile multi-view display [J]. Optics Express, 2018, 26(16): 20281-20297.

    [13] [13] PAGIDI S, MANDA R, BHATTACHARYYA S S, et al. Fast switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals [J]. Advanced Materials Interfaces, 2019, 6(18): 1900841.

              PAGIDI S, MANDA R, BHATTACHARYYA S S, et al. Fast switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals [J]. Advanced Materials Interfaces, 2019, 6(18): 1900841.

    [14] [14] MA Q G, ZHAO J, ZHANG S D, et al. Tilted LCD pixel with liquid crystal GRIN lens for two-dimensional/three-dimensional switchable display [J]. IEEE Photonics Journal, 2019, 11(4): 6901509.

              MA Q G, ZHAO J, ZHANG S D, et al. Tilted LCD pixel with liquid crystal GRIN lens for two-dimensional/three-dimensional switchable display [J]. IEEE Photonics Journal, 2019, 11(4): 6901509.

    [15] [15] CHANG Y C, JEN T H, TING C H, et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display [J]. Optics Express, 2014, 22(3): 2714-2724.

              CHANG Y C, JEN T H, TING C H, et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display [J]. Optics Express, 2014, 22(3): 2714-2724.

    [16] [16] ALGORRI J F, URRUCHI V, GARCA-CMARA B, et al. Liquid crystal microlenses for autostereoscopic displays [J]. Materials, 2016, 9(1): 36.

              ALGORRI J F, URRUCHI V, GARCA-CMARA B, et al. Liquid crystal microlenses for autostereoscopic displays [J]. Materials, 2016, 9(1): 36.

    [18] [18] ALGORRI J F, URRUCHI V, BENNIS N, et al. Tunable liquid crystal cylindrical micro-optical array for aberration compensation [J]. Optics Express, 2015, 23(11): 13899-13915.

              ALGORRI J F, URRUCHI V, BENNIS N, et al. Tunable liquid crystal cylindrical micro-optical array for aberration compensation [J]. Optics Express, 2015, 23(11): 13899-13915.

    [19] [19] TSOU Y S, CHANG K H, LIN Y H. A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system [J]. Journal of Applied Physics, 2013, 113(24): 244504.

              TSOU Y S, CHANG K H, LIN Y H. A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system [J]. Journal of Applied Physics, 2013, 113(24): 244504.

    [20] [20] BAILEY J, MORGAN P B, GLEESON H F, et al. Switchable liquid crystal contact lenses for the correction of presbyopia [J]. Crystals, 2018, 8(1): 29.

              BAILEY J, MORGAN P B, GLEESON H F, et al. Switchable liquid crystal contact lenses for the correction of presbyopia [J]. Crystals, 2018, 8(1): 29.

    [21] [21] KAO Y Y, CHAO P C P, HSUEH C W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths [J]. Optics Express, 2010, 18(18): 18506-18518.

              KAO Y Y, CHAO P C P, HSUEH C W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths [J]. Optics Express, 2010, 18(18): 18506-18518.

    [22] [22] LI L W, BRYANT D, BOS P J. Liquid crystal lens with concentric electrodes and inter-electrode resistors [J]. Liquid Crystals Reviews, 2014, 2(2): 130-154.

              LI L W, BRYANT D, BOS P J. Liquid crystal lens with concentric electrodes and inter-electrode resistors [J]. Liquid Crystals Reviews, 2014, 2(2): 130-154.

    [23] [23] LI L W, BRYANT D, VAN HEUGTEN T, et al. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes [J]. Optics Express, 2013, 21(7): 8371-8381.

              LI L W, BRYANT D, VAN HEUGTEN T, et al. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes [J]. Optics Express, 2013, 21(7): 8371-8381.

    [24] [24] BEECKMAN J, YANG T H, NYS I, et al. Multi-electrode tunable liquid crystal lenses with one lithography step [J]. Optics Letters, 2018, 43(2): 271-274.

              BEECKMAN J, YANG T H, NYS I, et al. Multi-electrode tunable liquid crystal lenses with one lithography step [J]. Optics Letters, 2018, 43(2): 271-274.

    [25] [25] HAN X J, DAI W W, MENG J J, et al. Electrically controlled liquid-crystal microlens arrays based on plane nonuniform spiral microcoils [C]//Proceedings of SPIE 10964, Tenth International Conference on Information Optics and Photonics. Beijing, China: SPIE, 2018: 109641T.

              HAN X J, DAI W W, MENG J J, et al. Electrically controlled liquid-crystal microlens arrays based on plane nonuniform spiral microcoils [C]//Proceedings of SPIE 10964, Tenth International Conference on Information Optics and Photonics. Beijing, China: SPIE, 2018: 109641T.

    [26] [26] HAN X J, DAI W W, LI D P, et al. Design and fabrication of electronically controlled liquid crystal microlens arrays with non-uniform coil electrode arrays [C]//Proceedings of SPIE 10607, MIPPR 2017: Multispectral Image Acquisition, Processing, and Analysis. Xiangyang, China: SPIE, 2018: 1060709.

              HAN X J, DAI W W, LI D P, et al. Design and fabrication of electronically controlled liquid crystal microlens arrays with non-uniform coil electrode arrays [C]//Proceedings of SPIE 10607, MIPPR 2017: Multispectral Image Acquisition, Processing, and Analysis. Xiangyang, China: SPIE, 2018: 1060709.

    [27] [27] CHEN M C, HAN X J, DAI W W, et al. Optical properties of a liquid-crystal microlens with an arrayed planar non-uniform spiral micro-coil electrode [J]. Journal of the Optical Society of America B, 2019, 36(11): 3174-3180.

              CHEN M C, HAN X J, DAI W W, et al. Optical properties of a liquid-crystal microlens with an arrayed planar non-uniform spiral micro-coil electrode [J]. Journal of the Optical Society of America B, 2019, 36(11): 3174-3180.

    [28] [28] CHU F, TIAN L L, LI R, et al. Adaptive nematic liquid crystal lens array with resistive layer [J]. Liquid Crystals, 2020, 47(4): 563-571.

              CHU F, TIAN L L, LI R, et al. Adaptive nematic liquid crystal lens array with resistive layer [J]. Liquid Crystals, 2020, 47(4): 563-571.

    [29] [29] TIAN L L, CHU F, DOU H, et al. Short-focus nematic liquid crystal microlens array with a dielectric layer [J]. Liquid Crystals, 2020, 47(1): 76-82, doi: 10.1080/02678292.2019.1630491.

              TIAN L L, CHU F, DOU H, et al. Short-focus nematic liquid crystal microlens array with a dielectric layer [J]. Liquid Crystals, 2020, 47(1): 76-82, doi: 10.1080/02678292.2019.1630491.

    [30] [30] LI R, CHU F, DOU H, et al. Double-layer liquid crystal lens array with composited dielectric layer [J]. Liquid Crystals, 2020, 47(2): 248-254.

              LI R, CHU F, DOU H, et al. Double-layer liquid crystal lens array with composited dielectric layer [J]. Liquid Crystals, 2020, 47(2): 248-254.

    [31] [31] KAWAMURA M, SATO S. Variable wide range of lens power and its improvement in a liquid-crystal lens using highly resistive films divided into two regions with different diameters [J]. Japanese Journal of Applied Physics, 2018, 57(5): 052602.

              KAWAMURA M, SATO S. Variable wide range of lens power and its improvement in a liquid-crystal lens using highly resistive films divided into two regions with different diameters [J]. Japanese Journal of Applied Physics, 2018, 57(5): 052602.

    [32] [32] JULL E I L, WAHLE M, WYATT P J M, et al. Efficiency improvements in a dichroic dye-doped liquid crystal Fresnel lens [J]. Optics Express, 2019, 27(19): 26799-26806.

              JULL E I L, WAHLE M, WYATT P J M, et al. Efficiency improvements in a dichroic dye-doped liquid crystal Fresnel lens [J]. Optics Express, 2019, 27(19): 26799-26806.

    [33] [33] LIN H Y, AVCI N, HWANG S J, et al. High-diffraction-efficiency Fresnel lens based on annealed blue-phase liquid crystal-polymer composite [J]. Liquid Crystals, 2019, 46(9): 1359-1366.

              LIN H Y, AVCI N, HWANG S J, et al. High-diffraction-efficiency Fresnel lens based on annealed blue-phase liquid crystal-polymer composite [J]. Liquid Crystals, 2019, 46(9): 1359-1366.

    [34] [34] WANG X Q, TAM A M W, JIA S H, et al. Low-voltage-driven smart glass based on micro-patterned liquid crystal Fresnel lenses [J]. Applied Optics, 2019, 58(4): 1146-1151.

              WANG X Q, TAM A M W, JIA S H, et al. Low-voltage-driven smart glass based on micro-patterned liquid crystal Fresnel lenses [J]. Applied Optics, 2019, 58(4): 1146-1151.

    [35] [35] HE Z Q, LEE Y H, CHEN R, et al. Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment [J]. Optics Letters, 2018, 43(20): 5062-5065.

              HE Z Q, LEE Y H, CHEN R, et al. Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment [J]. Optics Letters, 2018, 43(20): 5062-5065.

    [36] [36] JIANG M, GUO Y B, YU H, et al. Low f-number diffraction-limited Pancharatnam-Berry microlenses enabled by plasmonic photopatterning of liquid crystal polymers [J]. Advanced Materials, 2019, 31(18): 1808028.

              JIANG M, GUO Y B, YU H, et al. Low f-number diffraction-limited Pancharatnam-Berry microlenses enabled by plasmonic photopatterning of liquid crystal polymers [J]. Advanced Materials, 2019, 31(18): 1808028.

    [37] [37] KAUR S, KIM Y J, MILTON H, et al. Graphene electrodes for adaptive liquid crystal contact lenses [J]. Optics Express, 2016, 24(8): 8782-8787.

              KAUR S, KIM Y J, MILTON H, et al. Graphene electrodes for adaptive liquid crystal contact lenses [J]. Optics Express, 2016, 24(8): 8782-8787.

    CLP Journals

    [1] LI Rui, WANG Qiong-hua. Short focal length lens array based on liquid crystal material with large Δn[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4): 509

    [2] LIU Xin, LI Da-hai, ZHANG Xin-wei. Radius of Curvature Measurement of Optical Element in[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(6): 87

    [3] ZHANG Hong-zhou, ZHU Zhi-kang, HUANG Kai, LU Jian-gang. Adaptive modulation system for optical phase profile[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4): 522

    [4] ZHANG Jia-lun, YU Tao, HUANG Zhi-yu, PAN Guo-bin. Correcting the monochromatic aberration of the electrowetting liquid lens focusing system using liquid crystal lens[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(7): 954

    Tools

    Get Citation

    Copy Citation Text

    CAI Wen-feng, LI Yi-fei, JIANG Hao-dong, LUO Dan, LIU Yan-jun. Research progress of liquid crystal microlens arrays[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 749

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 25, 2020

    Accepted: --

    Published Online: Oct. 27, 2020

    The Author Email: CAI Wen-feng (11930196@mail.sustech.edu.cn)

    DOI:10.37188/yjyxs20203507.0749

    Topics