Acta Laser Biology Sinica, Volume. 32, Issue 1, 8(2023)

Application of Laser Speckle Contrast Imaging on Blood Flow Detection

GUO Lea1, TUXUN Hairegub2, ZHOU Jiaqib2, ZHANG Xueliangb2, and ALIFU Nuernishab2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(40)

    [2] [2] CORDOVIL I, HUGUENIN G, ROSA G, et al. Evaluation of systemic microvascular endothelial function using laser speckle contrast imaging [J]. Microvascular Research, 2012, 83(3): 376-379.

    [4] [4] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography [J]. Science, 1991, 254: 1178-1181.

    [5] [5] KUT C, CHAICHANA K L, XI J, et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography [J]. Science Translational Medicine, 2015, 7: 1-10.

    [6] [6] KATTA N, ESTRADA A D, MCELROY A B, et al. Laser brain cancer surgery in a xenograft model guided by optical coherence tomography [J]. Theranostics, 2019, 9(12): 3555.

    [11] [11] BREIERS J D, FERCHER A F. Retinal blood-flow visualization by means of laser speckle photography [J]. Investigative Ophthalmology Visual Science, 1982, 22(2): 255-259.

    [13] [13] AMINFAR A, DAVOODZADEH N, AGUILAR G, et al. Application of optical flow algorithms to laser speckle imaging [J]. Microvascular Research, 2018, 122: 52-59.

    [14] [14] VAZ P G, HUMEAU-HEURTIER A, FIGUEIRAS E, et al. Laser speckle imaging to monitor microvascular blood flow: a review [J]. IEEE Reviews in Biomedical Engineering, 2016, 9: 106-120.

    [15] [15] LIU C, KILIC K, ERDENERR S E, et al. Choosing a model for laser speckle contrast imaging [J]. Biomedical Optics Express, 2021, 12(6): 3571-3583.

    [16] [16] MENNES O A, NETTEN J J V, BAAL J G V, et al. Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging [J]. Physiological Measurement, 2019, 40(6): 065002.

    [17] [17] FENG W, LIU S, ZHANG C, et al. Comparison of cerebral and cutaneous microvascular dysfunction with the development of type 1 diabetes [J]. Theranostics, 2019, 9(20): 5854-5868.

    [18] [18] SCHRANDT J, KAZMI S S, JONES T A, et al. Chronic monitoring of vascular progression after ischemic stroke using multiexposure speckle imaging and two-photon fluorescence microscopy [J]. Journal of Cerebral Blood Flow & Metabolism, 2015, 35(6): 933-942.

    [19] [19] SOROP O, WOUW J, DRIE R, et al. Coronary microvascular dysfunction results in impaired coronary flow reserve and altered oxygen balance in a swine model of INOCA with multiple risk factors [J]. European Heart Journal, 2020, 41(2): ehaa946.3781.

    [20] [20] ANDERSON C P, PEKAS E J, PARK S Y. Microvascular dysfunction in peripheral artery disease: is heat therapy a viable treatment [J]. International Journal of Environmental Research and Public Health, 2021, 18(5): 2384.

    [21] [21] DUNN A K, BOLAY H, MOSKOWITZ M A, et al. Dynamic imaging of cerebral blood flow using laser speckle [J]. Journal of Cerebral Blood Flow & Metabolism, 2001, 21(3): 195-201.

    [22] [22] KELLY A, PAI A, LERTSAKDADET B, et al. Microvascular effects of pulsed dye laser in combination with oxymetazoline [J]. Lasers in Surgery and Medicine, 2020, 52(1): 17-22.

    [23] [23] DUNN J F, FORRESTER K R, MARTIN L, et al. A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints [J]. Lasers in Surgery and Medicine, 2011, 43(1): 21-28.

    [24] [24] LI D Y, XIA Q, YU T T, et al. Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: from monte carlo simulation to experimental demonstration [J]. Light Science Application, 2021, 10(1): 241.

    [25] [25] COUTURIER A, BOUVET R, CRACOWSKI J L, et al. Laser speckle contrast imaging as a better tool to access the cutaneous microcirculation: reproducibility and comparison to laser doppler imaging in animal models [J]. Archives of Cardiovascular Diseases Supplements, 2020, 12(2/4): 208-209.

    [27] [27] WEN L, ZHANG Y, ZHANG L, et al. Application of different noninvasive diagnostic techniques used in hmme-pdt in the treatment of port wine stains [J]. Photodiagnosis and Photodynamic Therapy, 2019, 25: 369-375.

    [28] [28] OKUNO T, SUGIYAMA T, TOMINAGA M, et al. Effects of caffeine on microcirculation of the human ocular fundus [J]. Japanese Journal of Ophthalmology, 2002, 46(2): 170-176.

    [29] [29] MAYSS A S, NOPASAK P, RPSA D M, et al. Quantitative oct angiography of the retinal microvasculature and the choriocapillaris in myopic eyes [J]. Investigative Ophthalmology & Visual Science, 2017, 58(4): 2063-2069.

    [30] [30] WU H, ZHANG G, SHEN M, et al. Assessment of choroidal vascularity and choriocapillaris blood perfusion in anisomyopic adults by SS-OCT/OCTA [J]. Investigative Ophthalmology & Visual Science, 2021, 62(1): 8.

    [31] [31] SRIENC A I, KURTH-NELSON Z L, NEWMAN E A. Imaging retinal blood flow with laser speckle flowmetry [J]. Frontiers in Neuroenergetics, 2010, 2: 1-10.

    [32] [32] FENG X, YU Y, ZOU D, et al. Functional imaging of human retina using integrated multispectral and laser speckle contrast imaging [J]. Journal of Biophotonics, 2022, 15(2): e202100285.

    [33] [33] KAZMI S M, RICHARDS L M, SCHRANDT C J, et al. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow [J]. Journal of Cerebral Blood Flow and Metabolism, 2015, 35(7): 1076-1084.

    [34] [34] VINNETT B A, KANDUKURI J, MSE C L, et al. Dynamic alterations in blood flow in glaucoma measured with laser speckle contrast imaging [J]. Ophthalmology Glaucoma, 2022, 5(3): 250-261.

    [35] [35] BENJAMIN E J, MUNTNER P, ALONSO A, et al. Heart disease and stroke statistics-2019 update: a report from the American heart association [J]. Circulation, 2019, 139(10): e56-e528.

    [36] [36] SMITH W S, SUNG G, SAVER J, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the multi merci trial [J]. Stroke, 2008, 39(4): 1205-1212.

    [37] [37] SENERS P, TURC G, MAIER B, et al. Incidence and predictors of early recanalization after intravenous thrombolysis: a systematic review and meta-analysis [J]. Stroke, 2016, 47(9): 2409-2412.

    [38] [38] GOYAL M, MENON B K, VAN ZWAM W H, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials [J]. The Lancet, 2016, 387(10029): 1723-1731.

    [39] [39] BO B, LI Y, LI W, et al. Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia [J]. Brain Stimulation, 2020, 13(3): 881-890.

    [40] [40] WANG H L, CHEN J W, YANG S H, et al. Multimodal optical imaging to investigate spatiotemporal changes in cerebrovascular function in auda treatment of acute ischemic stroke [J]. Frontiers in Cellular Neuroscience, 2021, 15: 655305.

    [41] [41] LINDE M, GUSTAVSSON A, STOVNER L J, et al. The cost of headache disorders in Europe: the eurolight project [J]. European Journal of Neurology, 2012, 19(5): 703-711.

    [42] [42] CHEN W T, LIN Y Y, FUH J L, et al. Sustained visual cortex hyperexcitability in migraine with persistent visual aura [J]. Brain: A Journal of Neurology, 2011, 134(Pt 8): 2387-2395.

    [43] [43] JENSEN R, STOVNER L J. Epidemiology and comorbidity of headache [J]. Lancet Neurology, 2008, 7(4):354-361.

    [44] [44] MOSKOWITZ M A, BOLAY H, DALKARA T. Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes [J].Annals of Neurology, 2004, 55(2): 276-280.

    [45] [45] STARHR C, HANGAARD L, BOUZINOVA E V, et al. Smooth muscle Ca2+ sensitization causes hypercontractility of middle cerebral arteries in mice bearing the familial hemiplegic migraine type 2 associated mutation [J]. Journal of Cerebral Blood Flow and Metabolism, 2019, 39(8): 1570-1587.

    [46] [46] STAEHR C, RAJANATHAN R, POSTNOV D D, et al. Abnormal neurovascular coupling as a cause of excess cerebral vasodilation in familial migraine [J]. Cardiovascular Research, 2020, 116(12): 2009-2020.

    [47] [47] TARANTINI S, FULOP G A, KISS T, et al. Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer’s disease using functional laser speckle contrast imaging [J]. Geroscience, 2017, 39(4): 465-473.

    [48] [48] TARANTINI S, VALCARCEL-ARES N M, YABLUCHANSKIY A, et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice [J]. Aging Cell, 2018, 17(2): e12731.

    Tools

    Get Citation

    Copy Citation Text

    GUO Lea, TUXUN Hairegub, ZHOU Jiaqib, ZHANG Xueliangb, ALIFU Nuernishab. Application of Laser Speckle Contrast Imaging on Blood Flow Detection[J]. Acta Laser Biology Sinica, 2023, 32(1): 8

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 25, 2022

    Accepted: --

    Published Online: Mar. 13, 2023

    The Author Email: Nuernishab ALIFU (nens_xjmu@126.com)

    DOI:10.3969/j.issn.1007-7146.2023.01.002

    Topics