Laser & Optoelectronics Progress, Volume. 60, Issue 7, 0730002(2023)

Improving Detection Accuracy of Laser-Induced Breakdown Spectroscopy for Cu Element in Pig Feed Based on Spatial Confinement

Mengqin Huang1, Shujia Wu1, Mingyin Yao1,2, Zihao Liu1, Chongjiu Wu1, Long Xue1,2, Muhua Liu1,2, and Jing Li1,2、*
Author Affiliations
  • 1School of Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
  • 2Jiangxi Key Laboratory of Modern Agricultural Equipment, Nanchang 330045, Jiangxi, China
  • show less
    References(29)

    [1] Kubitza S, Schröder S, Dietz E et al. Detecting sulfur on the Moon: the potential of vacuum ultraviolet laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 174, 105990(2020).

    [2] Lin X M, Huang Y T, Lin J J et al. The effect of self-absorption compensation methods on the quantitative analysis of soil samples using Laser-induced breakdown spectroscopy[J]. Optik, 243, 167301(2021).

    [3] Xing R Y. Study on improving the sensitivity of laser-induced breakdown spectroscopy based on atmospheric glow discharge[D](2020).

    [4] Fuentes R, Luarte D, Sandoval C et al. Data fusion of Laser Induced Breakdown Spectroscopy and Diffuse Reflectance for improved analysis of mineral species in copper concentrates[J]. Minerals Engineering, 173, 107193(2021).

    [5] Qiu S L, Li A, Wang X S et al. High-accuracy quantitatively analysis of iron content in mineral based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 48, 1611002(2021).

    [6] Li X L, He Z N, Liu F et al. Fast identification of soybean seed varieties using laser-induced breakdown spectroscopy combined with convolutional neural network[J]. Frontiers in Plant Science, 12, 714557(2021).

    [7] Yao M Y, Fu G R, Xu J et al. In situ diagnosis of mature HLB-asymptomatic citrus fruits by laser-induced breakdown spectroscopy[J]. Applied Optics, 60, 5846-5853(2021).

    [8] Guo L B, Zheng W N, Chen F et al. Meat species identification accuracy improvement using sample set portioning based on joint x-y distance and laser-induced breakdown spectroscopy[J]. Applied Optics, 60, 5826-5831(2021).

    [9] Zanetti T C, Catelani T A, Pereira-Filho E R et al. Laser-induced breakdown spectroscopy as a tool for homogeneity measurements in medicine tablets[J]. Laser Physics, 30, 035701(2020).

    [10] Wang J M, Li X J, Zheng P C et al. Spectral characterization of collinear double-pulse laser induced breakdown spectroscopy (DP-LIBS) for the analysis of the Chinese traditional medicine artemisia annua[J]. Analytical Letters, 53, 2921-2934(2020).

    [11] Kuzmanovic M, Stancalie A, Milovanovic D et al. Analysis of lead-based archaeological pottery glazes by laser induced breakdown spectroscopy[J]. Optics & Laser Technology, 134, 106599(2021).

    [12] Li N, Guo J J, Zhu L et al. Effects of ambient temperature on laser-induced plasma in bulk water[J]. Applied Spectroscopy, 73, 1277-1283(2019).

    [13] Li Q Z, Zhang W, Tang Z Y et al. Determination of fluorine content in rocks using laser-induced breakdown spectroscopy assisted with radical synthesis[J]. Talanta, 234, 122712(2021).

    [14] Salajková Z, Gardette V, Kaiser J et al. Effect of spherical gold nanoparticles size on nanoparticle enhanced Laser Induced Breakdown Spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 179, 106105(2021).

    [15] Kiris V V, Tarasenko N V, Nevar E A et al. Enhancement of analytical signal of laser induced breakdown spectroscopy by deposition of gold nanoparticles on analyzed sample[J]. Journal of Applied Spectroscopy, 86, 900-907(2019).

    [16] Chishti N A, Bashir S, Dawood A et al. Laser-induced breakdown spectroscopy of aluminum plasma in the absence and presence of magnetic field[J]. Applied Optics, 58, 1110-1120(2019).

    [17] Hussain A, Xun G, Asghar H et al. Enhancement of laser-induced breakdown spectroscopy (LIBS) signal subject to the magnetic confinement and dual pulses[J]. Optics and Spectroscopy, 129, 452-459(2021).

    [18] Al Shuaili A A, Al Hadhrami A M, Wakil M A et al. Improvement of palladium limit of detection by microwave-assisted laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 159, 105666(2019).

    [19] Oba M, Miyabe M, Akaoka K et al. Development of microwave-assisted, laser-induced breakdown spectroscopy without a microwave cavity or waveguide[J]. Japanese Journal of Applied Physics, 59, 062001(2020).

    [20] Wang Q Y, Chen A M, Liu Y T et al. Reduction of self-absorption in femtosecond laser-induced breakdown spectroscopy using spark discharge[J]. Physics of Plasmas, 28, 083301(2021).

    [21] Qiu Y, Wu J, Yu H et al. Measurement of trace chromium on structural steel surface from a nuclear power plant using dual-pulse fiber-optic laser-induced breakdown spectroscopy[J]. Applied Surface Science, 533, 147497(2020).

    [22] Bhatt C R, Hartzler D, Jain J C et al. Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements[J]. Optics & Laser Technology, 126, 106110(2020).

    [23] Lin Z H, Li R H, Jiang Y H et al. Signal enhancement in target-enhanced orthogonal double-pulse laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 48, 2411001(2021).

    [24] Zhang L L, Yang Y W. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining a cylindrical cavity confinement and Au-Nanoparticles action[J]. Optik, 220, 165129(2020).

    [25] Shao J F, Wang T F, Guo J et al. Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 19, 93-98(2017).

    [26] Yang X, Chen A M, Li S Y et al. Effect of parallel plate constraint on CN molecular spectra in laser-induced PMMA plasma[J]. Chinese Journal of Lasers, 47, 0811002(2020).

    [27] Wang Q Y, Chen A M, Zhang D et al. The role of cavity shape on spatially confined laser-induced breakdown spectroscopy[J]. Physics of Plasmas, 25, 073301(2018).

    [28] Li M Y, Cui J, Guo J L et al. Investigation and analysis of nitrogen, phosphorus, heavy metals and antibiotics in feed and feces of large-scale pig farms in Henan Province[J]. Chinese Journal of Animal Science, 53, 103-106(2017).

    [29] Chen F, Lu W J, Chu Y W et al. High accuracy analysis of fiber-optic laser-induced breakdown spectroscopy by using multivariate regression analytical methods[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 180, 106160(2021).

    Tools

    Get Citation

    Copy Citation Text

    Mengqin Huang, Shujia Wu, Mingyin Yao, Zihao Liu, Chongjiu Wu, Long Xue, Muhua Liu, Jing Li. Improving Detection Accuracy of Laser-Induced Breakdown Spectroscopy for Cu Element in Pig Feed Based on Spatial Confinement[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0730002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Dec. 21, 2021

    Accepted: Feb. 14, 2022

    Published Online: Mar. 31, 2023

    The Author Email: Jing Li (lijing3815@163.com)

    DOI:10.3788/LOP213301

    Topics