Chinese Journal of Lasers, Volume. 44, Issue 2, 207001(2017)

Development of 50 kHz Intravascular Swept Source Optical Coherence Tomographic System

Lu Yu1,2, Li Zhongliang1,2, Wang Xiangzhao1,2, Nan Nan1, and Wang Xuan1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(25)

    [1] [1] Zvyagin A V, Blazkiewicz P, Vintrou J. Image reconstruction in full-field Fourier-domain optical coherence tomography[J]. Journal of Optics A, 2005, 7(7): 350-356.

    [2] [2] Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 2003, 11(8): 889-894.

    [3] [3] Choma M A, Sarunic M V, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 2003, 11(18): 2183-2189.

    [4] [4] de Boer J F, Cense B, Park B H, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 2003, 28(21): 2067-2069.

    [5] [5] Li Y, Gong X J, Liu C B, et al. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9 mm diameter catheter[J]. Journal of Biomedical Optics, 2015, 20(6): 065006.

    [6] [6] Jang I K, Bouma B E, Kang D H, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound[J]. Journal of the American College of Cardiology, 2002, 39(4): 604-609.

    [7] [7] Regar E, Ligthart J, Bruining N, et al. The diagnostic value of intracoronary optical coherence tomography[J]. Herz, 2011, 36(5): 417-429.

    [8] [8] Yin J C, Yang H C, Li X, et al. Integrated intravascular optical coherence tomography ultrasound imaging system[J]. Journal of Biomedical Optics, 2010, 15(1): 010512.

    [9] [9] Kolodgie F D, Burke A P, Farb A, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes[J]. Current Opinion in Cardiology, 2001, 16(5): 285-292.

    [10] [10] Kim K H, Park B H, Maguluri G N, et al. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography[J]. Optics Express, 2007, 15(26): 18130-18140.

    [11] [11] Moon S, Piao Z L, Kim C S, et al. Lens-free endoscopy probe for optical coherence tomography[J]. Optics Letters, 2013, 38(12): 2014-2016.

    [12] [12] Mu X J, Zhou G Y, Yu H B, et al. Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe[J]. Optics Express, 2012, 20(6): 6325-6339.

    [13] [13] Chu K K, Unglert C, Ford T N, et al. In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography[J]. Biomedical Optics Express, 2016, 7(7): 2494-2505.

    [14] [14] Herz P R, Chen Y, Aguirre A D, et al. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 2004, 29(19): 2261-2263.

    [15] [15] Tran P H, Mukai D S, Brenner M, et al. In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe[J]. Optics Letters, 2004, 29(11): 1236-1238.

    [16] [16] Su J P, Zhang J, Yu L F, et al. In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography[J]. Optics Express, 2007, 15(16): 10390-10396.

    [17] [17] Su J P, Zhang J, Yu L F, et al. Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor[J]. Journal of Biomedical Optics, 2008, 13(3): 030506.

    [18] [18] Wang T, Pfeiffer T, Regar E, et al. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography[J]. Biomedical Optics Express, 2015, 6(12): 5021-5032.

    [19] [19] Wang T S, Wieser W, Springeling G, et al. Intravascular optical coherence tomography imaging at 3200 frames per second[J]. Optics Letters, 2013, 38(10): 1715-1717.

    [20] [20] Neet J M, Winston T R, Hedrick A D, et al. Navigating a guide wire through total occlusions: clinical experience[C]. SPIE, 2000, 3907: 536-543.

    [22] [22] Leitgeb R A, Drexler W, Unterhuber A, et al. Ultrahigh resolution Fourier domain optical coherence tomography[J]. Optics Express, 2004, 12(10): 2156-2165.

    [23] [23] Wang Ling, Zhu Hailong, Tu Pei, et al. High-speed three-dimensional swept source optical coherence tomography system based on LabVIEW[J]. Chinese J Lasers, 2014, 41(7):0704001.

    [24] [24] Drake T K, DeSoto M G, Peters J J, et al. Design and validation of a multiplexed low coherence interferometry instrument for in vivo clinical measurement of microbicide gel thickness distribution[J]. Biomedical Optics Express, 2011, 2(10): 2850-2858.

    [25] [25] Chen T Y, Zhang N, Huo T C, et al. Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor[J]. Journal of Biomedical Optics, 2013, 18(8): 086011.

    CLP Journals

    [1] Xu Yong, Wang Yi, Qiu Jianrong, Shen Yi, Xiao Yuze, Chen Xiaodong. IVUS-OCT Imaging System for Detection of Intravascular Lipid Plaque[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81701

    Tools

    Get Citation

    Copy Citation Text

    Lu Yu, Li Zhongliang, Wang Xiangzhao, Nan Nan, Wang Xuan. Development of 50 kHz Intravascular Swept Source Optical Coherence Tomographic System[J]. Chinese Journal of Lasers, 2017, 44(2): 207001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Sep. 29, 2016

    Accepted: --

    Published Online: Feb. 22, 2017

    The Author Email:

    DOI:10.3788/cjl201744.0207001

    Topics