Chinese Journal of Lasers, Volume. 44, Issue 2, 207001(2017)
Development of 50 kHz Intravascular Swept Source Optical Coherence Tomographic System
[1] [1] Zvyagin A V, Blazkiewicz P, Vintrou J. Image reconstruction in full-field Fourier-domain optical coherence tomography[J]. Journal of Optics A, 2005, 7(7): 350-356.
[2] [2] Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 2003, 11(8): 889-894.
[3] [3] Choma M A, Sarunic M V, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 2003, 11(18): 2183-2189.
[4] [4] de Boer J F, Cense B, Park B H, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 2003, 28(21): 2067-2069.
[5] [5] Li Y, Gong X J, Liu C B, et al. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9 mm diameter catheter[J]. Journal of Biomedical Optics, 2015, 20(6): 065006.
[6] [6] Jang I K, Bouma B E, Kang D H, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound[J]. Journal of the American College of Cardiology, 2002, 39(4): 604-609.
[7] [7] Regar E, Ligthart J, Bruining N, et al. The diagnostic value of intracoronary optical coherence tomography[J]. Herz, 2011, 36(5): 417-429.
[8] [8] Yin J C, Yang H C, Li X, et al. Integrated intravascular optical coherence tomography ultrasound imaging system[J]. Journal of Biomedical Optics, 2010, 15(1): 010512.
[9] [9] Kolodgie F D, Burke A P, Farb A, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes[J]. Current Opinion in Cardiology, 2001, 16(5): 285-292.
[10] [10] Kim K H, Park B H, Maguluri G N, et al. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography[J]. Optics Express, 2007, 15(26): 18130-18140.
[11] [11] Moon S, Piao Z L, Kim C S, et al. Lens-free endoscopy probe for optical coherence tomography[J]. Optics Letters, 2013, 38(12): 2014-2016.
[12] [12] Mu X J, Zhou G Y, Yu H B, et al. Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe[J]. Optics Express, 2012, 20(6): 6325-6339.
[13] [13] Chu K K, Unglert C, Ford T N, et al. In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography[J]. Biomedical Optics Express, 2016, 7(7): 2494-2505.
[14] [14] Herz P R, Chen Y, Aguirre A D, et al. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 2004, 29(19): 2261-2263.
[15] [15] Tran P H, Mukai D S, Brenner M, et al. In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe[J]. Optics Letters, 2004, 29(11): 1236-1238.
[16] [16] Su J P, Zhang J, Yu L F, et al. In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography[J]. Optics Express, 2007, 15(16): 10390-10396.
[17] [17] Su J P, Zhang J, Yu L F, et al. Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor[J]. Journal of Biomedical Optics, 2008, 13(3): 030506.
[18] [18] Wang T, Pfeiffer T, Regar E, et al. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography[J]. Biomedical Optics Express, 2015, 6(12): 5021-5032.
[19] [19] Wang T S, Wieser W, Springeling G, et al. Intravascular optical coherence tomography imaging at 3200 frames per second[J]. Optics Letters, 2013, 38(10): 1715-1717.
[20] [20] Neet J M, Winston T R, Hedrick A D, et al. Navigating a guide wire through total occlusions: clinical experience[C]. SPIE, 2000, 3907: 536-543.
[22] [22] Leitgeb R A, Drexler W, Unterhuber A, et al. Ultrahigh resolution Fourier domain optical coherence tomography[J]. Optics Express, 2004, 12(10): 2156-2165.
[23] [23] Wang Ling, Zhu Hailong, Tu Pei, et al. High-speed three-dimensional swept source optical coherence tomography system based on LabVIEW[J]. Chinese J Lasers, 2014, 41(7):0704001.
[24] [24] Drake T K, DeSoto M G, Peters J J, et al. Design and validation of a multiplexed low coherence interferometry instrument for in vivo clinical measurement of microbicide gel thickness distribution[J]. Biomedical Optics Express, 2011, 2(10): 2850-2858.
[25] [25] Chen T Y, Zhang N, Huo T C, et al. Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor[J]. Journal of Biomedical Optics, 2013, 18(8): 086011.
Get Citation
Copy Citation Text
Lu Yu, Li Zhongliang, Wang Xiangzhao, Nan Nan, Wang Xuan. Development of 50 kHz Intravascular Swept Source Optical Coherence Tomographic System[J]. Chinese Journal of Lasers, 2017, 44(2): 207001
Category: biomedical photonics and laser medicine
Received: Sep. 29, 2016
Accepted: --
Published Online: Feb. 22, 2017
The Author Email: