Acta Laser Biology Sinica, Volume. 28, Issue 5, 439(2019)
Tracking the Spatial Distribution of Cx43 in Different Differentiated Esophageal Cancer Cells Using Fluorescence Images
[1] [1] DE BRABANDER M, NUYDENS R, GEERTS H, et al. Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431)cells with nanovid microscopy[J]. Cell Motility and the Cytoskeleton, 1988, 9(1): 30-47.
[2] [2] CHENOUARD N, SMAL I, DE CHAUMONT F, et al. Objective comparison of particle tracking methods [J]. Nature Methods, 2014, 11(3): 281-289.
[3] [3] MANZO C, GARCIA-PARAJO M F. A review of progress in single particle tracking: from methods to biophysical insights[J]. Reports on Progress in Physics, 2015, 78(12): 124601.
[4] [4] CHEN X, LEE K, REN X, et al. Synthesis of a highly HOCl-selective fluorescent probe and its use for imaging HOCl in cells and organisms[J]. Nature Protocols, 2016, 11(7): 1219-1228.
[5] [5] HUANG B, BATES M, ZHUANG X. Super-resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 2009, 78: 993-1016.
[6] [6] PATTERSON G, DAVIDSON M, MANLEY S, et al. Superresolution imaging using single-molecule localization[J]. Annual Review of Physical Chemistry, 2010, 61: 345-367.
[7] [7] GIEPMANS B N G, ADAMS S R, ELLISMAN M H, et al. The fluorescent toolbox for assessing protein location and function[J]. Science, 2006, 312 (5771): 217-224.
[8] [8] WELCH C M, ELLITT H, DANUSER G, et al. Imaging the coordination of multiple signaling activities in living cells[J]. Nature Reviews Molecular Cell Biology, 2011, 12(11): 749-756.
[9] [9] SZYMANSKI C J, HUMPHRIES W H, PAYNE C K. Single particle tracking as a method to resolve differences in highly colocalized proteins[J]. Analyst, 2011, 136(17): 3527-3533.
[10] [10] BONACQUISTI E E, NGUYEN J. Connexin 43 (Cx43)in cancer: implications for therapeutic approaches via gap junctions[J].Cancer Letters, 2019, 442: 439-444.
[11] [11] FAN S Q, ZHOU M, XIANG Q, et al. In situ expression of connexins in various carcinomas[J]. Chinese Journal of Cancer, 2003, 22(7): 686-690.
[12] [12] WANG guangyu. The expression of Cx43 protein in esophageal squamous cell carcinoma tissues and its clinical significance[D]. Beijing: PLA Medical College, 2014: 1-39.
[13] [13] ALCOR D, GOUZER G, TRILLER A. Single-particle tracking methods for the study of membrane receptors dynamics[J]. European Journal of Neuroscience, 2009, 30(6): 987-997.
[14] [14] CHENOUARD N, SMAL I, DE CHAUMONT F, et al. Objective comparison of particle tracking methods[J]. Nature Methods, 2014, 11(3): 281-289.
[15] [15] JAQAMAN K, LOERKE D, METTLEN M, et al. Robust single-particle tracking in live-cell time-lapse sequences[J]. Nature Methods, 2008, 5(8): 695-702.
[16] [16] YANG G. Bioimage informatics for understanding spatiotemporal dynamics of cellular processes[J]. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5(3): 367-380.
[17] [17] SEGURA R L, AGUILA-ARCOS S, UGARTE-URIBE B, et al. Subcellular location of the coupling protein TrwB and the role of its transmembrane domain[J]. Biochimica et Biophysica Acta, 2014, 1838(1): 223-230.
[18] [18] FRANK D K, SZYMKOWIAK B, HUGHES C A. Connexin expression and gap junctional intercellular communication in human squamous cell carcinoma of the head and neck[J]. Otolaryngology-Head and Neck Surgery, 2006, 135(5): 736-743.
[19] [19] SOLAN J L, HINGORANI S R, LAMPE P D. Changes in connexin43 expression and localization during pancreatic cancer progression[J]. Journal of Membrane Biology, 2012, 245(5-6): 255-262.
[21] [21] HANNA E A, UMHAUER S, ROSHONG S L, et al. Gap junctional intercellular communication and connexin43 expression in human ovarian surface epithelial cells and ovarian carcinomas in vivo and in vitro[J]. Carcinogenesis, 1999, 20 (7): 1369-1373.
[22] [22] KING T J, FUKUSHIMA L H, HIEBER A D, et al. Reduced levels of connexin43 in cervical dysplasia: inducible expression in a cervical carcinoma cell line decreases neoplastic potential with implications for tumor progression[J]. Carcinogenesis, 2000, 21(6): 1097-1109.
[23] [23] ALLERSMA M W, WANG L, AXELROD D, et al. Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy[J]. Molecular Biology of the Cell, 2004, 15(10): 4658-4668.
[24] [24] HOLZ R W, AXELROD D. Secretory granule behaviour adjacent to the plasma membrane before and during exocytosis: total internal reflection fluorescence microscopy studies[J]. Acta Physiologica (Oxf), 2008, 192(2): 303-307.
[25] [25] SICK B, HECHT B, NOVOTNY L. Orientational imaging of single molecules by annular illumination[J]. Physical Review Letters, 2000, 85(21): 4482-4485.
[26] [26] MATSUNO A, MIZUTANI A, OKINAGA H, et al. Molecular morphology of pituitary cells, from conventional immunohistochemistry to fluorescein imaging[J]. Molecules, 2011, 16(5): 3618-3635.
[27] [27] BARMAN B, BHATTACHARYYA S N. mRNA targeting to endoplasmic reticulum precedes ago protein interaction and microRNA (miRNA)-mediated translation repression in mammalian Cells[J]. Journal of Biological Chemistry, 2015, 290(41): 24650-24656.
Get Citation
Copy Citation Text
LIN Juelong, SHEN Zhizhong, LIU Liu, ZHUANG Bingrong, PIAO Zhongxian, LI Weiqiua. Tracking the Spatial Distribution of Cx43 in Different Differentiated Esophageal Cancer Cells Using Fluorescence Images[J]. Acta Laser Biology Sinica, 2019, 28(5): 439
Category:
Received: Apr. 20, 2019
Accepted: --
Published Online: Nov. 14, 2019
The Author Email: Juelong LIN (lin.juelong@qq.com)