Journal of Synthetic Crystals, Volume. 54, Issue 1, 146(2025)

Effect of Lithium Salt and Film-Forming Additives on the Low Temperature Electrochemical Performance of Lithium-Ion Batteries

JIANG Xiaoxue1, SONG Fei2, HU Guangyu2, XU Jinhua1, and LI Cuiqin1,3、*
Author Affiliations
  • 1School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
  • 2Guizhou Hang Sheng Lithium Energy Technology Co., Ltd., Guiyang 550025, China
  • 3Guizhou Provincial Collaborative Innovation Center for Efficient Utilization of Phosphorus and Fluorine Resources, Guiyang 550025, China
  • show less
    References(22)

    [1] [1] WANG W, YANG Q, QIAN K, et al. Impact of evolution of cathode electrolyte interface of Li(Ni0.8Co0.1Mn0.1)O2 on electrochemical performance during high voltage cycling process[J]. Journal of Energy Chemistry, 2020, 47: 72-78.

    [2] [2] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy Storage Materials, 2020, 24: 85-112.

    [3] [3] ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): 2107899.

    [4] [4] WANG B, TANG M, WU Y C, et al. A 2D layered natural ore as a novel solid-state electrolyte[J]. ACS Applied Energy Materials, 2019, 2(8): 5909-5916.

    [5] [5] TRON A, JEONG S, PARK Y D, et al. Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14531-14538.

    [6] [6] LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges[J]. Chemistry-A European Journal, 2021, 27(64): 15842-15865.

    [7] [7] HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988.

    [8] [8] CHEN L, WU H L, AI X P, et al. Toward wide-temperature electrolyte for lithium-ion batteries[J]. Battery Energy, 2022, 1(2): 20210006.

    [9] [9] QIAN Y X, HU S G, ZOU X S, et al. How electrolyte additives work in Li-ion batteries[J]. Energy Storage Materials, 2019, 20: 208-215.

    [10] [10] ZHANG Z Y, HU T S, SUN Q M, et al. The optimized LiBF4 based electrolytes for TiO2(B) anode in lithium ion batteries with an excellent low temperature performance[J]. Journal of Power Sources, 2020, 453: 227908.

    [11] [11] WOTANGO A S, SU W N, HAREGEWOIN A M, et al. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25252-25262.

    [13] [13] CHENG F Y, ZHANG X Y, WEI P, et al. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries[J]. Science Bulletin, 2022, 67(21): 2225-2234.

    [14] [14] LI L C, LV W X, CHEN J, et al. Lithium difluorophosphate (LiPO2F2): an electrolyte additive to help boost low-temperature behaviors for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(9): 11900-11914.

    [15] [15] JIANG B, LI J R, LUO B, et al. LiPO2F2 electrolyte additive for high-performance Li-rich cathode material[J]. Journal of Energy Chemistry, 2021, 60: 564-571.

    [16] [16] BIAN X F, GE S X, PANG Q, et al. A novel lithium difluoro (oxalate) borate and lithium hexafluoride phosphate dual-salt electrolyte for Li-excess layered cathode material[J]. Journal of Alloys and Compounds, 2018, 736: 136-142.

    [17] [17] CHEN H X, LIU B, WANG Y, et al. Insight into wide temperature electrolyte based on lithiumdifluoro (oxalate) borate for high voltage lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 876: 159966.

    [18] [18] CHE Y X, LIN X Y, XING L D, et al. Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive[J]. Journal of Energy Chemistry, 2021, 52: 361-371.

    [19] [19] GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4653-4672.

    [20] [20] SHEN C, WANG S W, JIN Y, et al. In situ AFM imaging of solid electrolyte interfaces on HOPG with ethylene carbonate and fluoroethylene carbonate-based electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25441-25447.

    [21] [21] CRESCE A V, RUSSELL S M, BAKER D R, et al. In situ and quantitative characterization of solid electrolyte interphases[J]. Nano Letters, 2014, 14(3): 1405-1412.

    [24] [24] JURNG S, BROWN Z L, KIM J, et al. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy & Environmental Science, 2018, 11(9): 2600-2608.

    [25] [25] LI Y K, CHENG B, JIAO F P, et al. The roles and working mechanism of salt-type additives on the performance of high-voltage lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16298-16307.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Xiaoxue, SONG Fei, HU Guangyu, XU Jinhua, LI Cuiqin. Effect of Lithium Salt and Film-Forming Additives on the Low Temperature Electrochemical Performance of Lithium-Ion Batteries[J]. Journal of Synthetic Crystals, 2025, 54(1): 146

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 4, 2024

    Accepted: Feb. 18, 2025

    Published Online: Feb. 18, 2025

    The Author Email: Cuiqin LI (cqli@gzu.edu.cn)

    DOI:10.16553/j.cnki.issn1000-985x.2024.0195

    Topics