Chinese Optics Letters, Volume. 20, Issue 4, 041402(2022)
Single-frequency Er:YAG ceramic pulsed laser with frequency stability close to 100 kHz
[1] V. Wulfmeyer, M. Randall, A. Brewer, R. M. Hardesty. 2-µm Doppler lidar transmitter with high frequency stability and low chirp. Opt. Lett., 25, 1228(2000).
[2] Y. Zhu, J. Yang, X. Chen, X. Zhu, J. Zhang, S. Li, Y. Sun, X. Hou, D. Bi, L. Bu, Y. Zhang, J. Liu, W. Chen. Airborne validation experiment of 1.57-µm double-pulse IPDA LIDAR for atmospheric carbon dioxide measurement. Remote Sens., 12, 1999(2020).
[3] N. Cezard, S. Le Mehaute, J. Le Gouet, M. Valla, D. Goular, D. Fleury, C. Planchat, A. Dolfi-Bouteyre. Performance assessment of a coherent DIAL-Doppler fiber lidar at 1645 nm for remote sensing of methane and wind. Opt. Express, 28, 22345(2020).
[4] X. Zhu, J. Liu, D. Bi, J. Zhou, W. Diao, W. Chen. Development of all-solid coherent Doppler wind lidar. Chin. Opt. Lett., 10, 012801(2012).
[5] W. Diao, X. Zhang, J. Liu, X. Zhu, Y. Liu, D. Bi, W. Chen. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers. Chin. Opt. Lett., 12, 072801(2014).
[6] Z. Bu, S. Chen, Y. Zhang, H. Chen, X. Ge, P. Guo. Effect of laser pulse shape and duration on spectrum width of coherent LIDAR. Chin. Opt. Lett., 12, S12801(2014).
[7] X. Sun, J. Liu, J. Zhou, W. Chen. Frequency stabilization of a single-frequency all-solid-state laser for Doppler wind lidar. Chin. Opt. Lett., 6, 679(2008).
[8] J. Caron, Y. Durand. Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2. Appl. Opt., 48, 5413(2009).
[9] F. Gibert, D. Edouart, C. Cénac, F. Le Mounier. 2-µm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application. Appl. Phys. B, 116, 967(2014).
[10] P. Kucirek, A. Meissner, S. Nyga, J. Mertin, M. Höfer, H.-D. Hoffmann. A single-frequency Ho:YLF pulsed laser with frequency stability better than 500 kHz. Proc. SPIE, 10082, 100821K(2017).
[11] O. Lux, D. Wernham, P. Bravetti, P. McGoldrick, O. Lecrenier, W. Riede, A. D’Ottavi, V. De Sanctis, M. Schillinger, J. Lochard, J. Marshall, C. Lemmerz, F. Weiler, L. Mondin, A. Ciapponi, T. Kanitz, A. Elfving, T. Parrinello, O. Reitebuch. High-power and frequency-stable ultraviolet laser performance in space for the wind lidar on Aeolus. Opt. Lett., 45, 1443(2020).
[12] F. Shen, Z. Wang, Y. Xia, B. Wang, P. Zhuang, C. Qiu. Quad-Fabry–Perot etalon based Rayleigh Doppler lidar for 0.2-60 km altitude wind, temperature and aerosol accurate measurement. Optik, 236, 166668(2021).
[13] J. Du, Y. Sun, D. Chen, Y. Mu, M. Huang, Z. Yang, J. Liu, D. Bi, X. Hou, W. Chen. Frequency-stabilized laser system at 1572 nm for space-borne CO2 detection LIDAR. Chin. Opt. Lett., 15, 031401(2017).
[14] L. A. Rahn. Feedback stabilization of an injection-seeded Nd:YAG laser. Appl. Opt., 24, 940(1985).
[15] S. W. Henderson, E. H. Yuen, E. S. Fry. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers. Opt. Lett., 11, 715(1986).
[16] Y. Zhang, C. Gao, Q. Wang, Q. Na, M. Zhang, M. Gao, S. Huang. 1 kHz single-frequency, injection-seeded Er:YAG laser with an optical feedback. Chin. Opt. Lett., 17, 031402(2019).
[17] C. E. Hamilton. Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision. Opt. Lett., 17, 728(1992).
[18] A. Sträßer, T. Waltinger, M. Ostermeyer. Injection seeded frequency stabilized Nd:YAG ring oscillator following a Pound–Drever–Hall scheme. Appl. Opt., 46, 8358(2007).
[19] M. Ostermeyer, T. Waltinger, M. Gregor. Frequency stabilization of a Q-switched Nd:YAG laser oscillator with stability better 300 kHz following an rf-sideband scheme. Opt. Commun., 282, 3302(2009).
[20] F. Gibert, D. Edouart, C. Cénac, F. Le Mounier, A. Dumas. 2-µm Ho emitter-based coherent DIAL for CO2 profiling in the atmosphere. Opt. Lett., 40, 3093(2015).
[21] C. Chen, Q. Wang, S. Huang, X. Zhang, K. Wang, M. Gao, C. Gao. Single-frequency Q-switched Er:YAG laser with high frequency and energy stability via the Pound–Drever–Hall locking method. Opt. Lett., 45, 3745(2020).
[22] D. S. Zrnic. Estimation of spectral moments for weather echoes. IEEE Trans. Geosci. Electron., 17, 113(1979).
[23] R. Frehlich, M. Yadlowsky. Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Ocean. Technol., 11, 1217(1994).
[24] Y. Zheng, C. Gao, R. Wang, M. Gao, Q. Ye. Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode. Opt. Lett., 38, 784(2013).
[25] C. Chen, Z. Li, X. Jin, Y. Zheng. Resonant photodetector for cavity- and phase-locking of squeezed state generation. Rev. Sci. Instrum, 87, 103114(2016).
[26] D. W. Allan. Statistics of atomic frequency standards. Proc. IEEE, 54, 221(1966).
Get Citation
Copy Citation Text
Chaoyong Chen, Chunqing Gao, Huixing Dai, Qing Wang, "Single-frequency Er:YAG ceramic pulsed laser with frequency stability close to 100 kHz," Chin. Opt. Lett. 20, 041402 (2022)
Category: Lasers, Optical Amplifiers, and Laser Optics
Received: Dec. 6, 2021
Accepted: Jan. 19, 2022
Published Online: Feb. 14, 2022
The Author Email: Chunqing Gao (gao@bit.edu.cn)