High Power Laser Science and Engineering, Volume. 4, Issue 3, 03000e22(2016)

Probing the ultrafast dynamics in nanomaterial complex systems by femtosecond transient absorption spectroscopy

Qun Zhang and Yi Luo
Author Affiliations
  • Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
  • show less
    Figures & Tables(7)
    Schematic illustration of the three, major contributions (i.e., GSB, SE, and ESA) to a typical ${\it\Delta}A$ spectrum (at a certain time delay ${\it\tau}$ between the pump and the probe), as marked in the left panel[14], where the profile labeled ‘Sum’ (thickened solid line) represents the realistic ‘overlapping’ ${\it\Delta}A$ spectrum visualized by the spectrometer. The right panel depicts the corresponding, three processes monitored in a time-resolved pump–probe configuration (with a WLC probe, typically).
    (a) Schematic optical layout of a typical ultrafast TA setup that features a tunable pump (delivered by a femtosecond optical parametric amplifier) and a broadband WLC probe (generated by focusing a small portion of the Ti:sapphire regenerative amplifier output in a transparent nonlinear crystal). (b) The CDP ExciPro femtosecond pump–probe system that operates in our ultrafast spectroscopy laboratory at USTC[15].
    (a) ${\it\Delta}A({\it\lambda},{\it\tau})$ spectra recorded on the highly oxidized, as-synthesized GO ($\text{C}/\text{O}\approx 2.7/1$) samples using a 570-nm pump and a WLC probe (490–530 nm for blue-shifted probing and 630–770 nm for red-shifted probing). (b) Schematic illustration of the band structure of the graphene–ORD model as well as the VB-hole blockade effect responsible for the type-I graphene-like dynamics observed in the blue-shifted probing regime. (c) A typical type-I kinetic trace extracted from the line cutting at 520 nm in (a). (d) A representative kinetic trace observed in pristine graphene[23] for comparison with (c). All the figures are adapted from Ref. [20].
    (a) Schematic of the three-dimensional network of PCN-222 that features large channels running through the $c$-axis. (b) The amount of $\text{HCOO}^{-}$ produced as a function of the time of Visible-light irradiation over (i) PCN-222, (ii) H2TCPP, (iii) no PCN-222, (iv) no TEOA, and (v) no CO2. A Xe lamp was filtered to produce light in 420–800 nm. (c) ${\it\Delta}A$ spectra of PCN-222 recorded at different probe delays (pump at 500 nm). (d) A representative ${\it\Delta}A$ kinetic trace of PCN-222 probed at 430 nm. (e) Schematic illustration of the photoexcited dynamics involved in H2TCPP (left) and PCN-222 (right). All the figures are adapted from Ref. [26].
    (a) Schematic illustration of the synthesized Cu3(BTC)2@TiO2 core–shell structure. (b) Production yields of CH4 and H2 from CO2 using Cu3(BTC)2@TiO2 as photocatalysts under the UV irradiation for 4 h, in reference to bare TiO2 and bare Cu3(BTC)2. All the samples were carefully pretreated to remove any carbon contaminants. (c) Representative ${\it\Delta}A$ kinetic traces for bare TiO2, bare Cu3(BTC)2, and Cu3(BTC)2@TiO2, probed at 450, 600, and 600 nm, respectively (pump at 350 nm). (d) Schematic illustration of the mechanisms involving the interface states-related electron transfer and relaxation dynamics. All the figures are adapted from Ref. [28].
    (a) Production yield of gluconic acid (in 2 h) versus the UV-light incident power using Pd–TiO2 as catalysts (in reference to Pd nanocubes and bare TiO2), showing a ${\it\Lambda}$-shaped relationship. (b) Representative ${\it\Delta}A$ kinetic traces (left: 0–2 ns, right: 0–30 ps; probe at 520 nm) recorded with a 480-nm pump. (c) Schematic illustration of the mechanisms involving the electron transfer and relaxation dynamics under the 480-nm photoexcitation. (d) Representative ${\it\Delta}A$ kinetic traces (left: 0–2 ns, right: 0–30 ps; probe at 520 nm) recorded with a 350-nm pump. (e) Schematic illustration of the mechanisms involving the electron transfer and relaxation dynamics under the 350-nm photoexcitation. All the figures are adapted from Ref. [30].
    (a) Schematic illustration of molecular co-catalysis strategy for accelerating hole transfer. Homogeneous molecular co-catalysts use reversible redox couple and highly active free radical reactions to promote hole transfer, unlike the conventional, supported heterogeneous co-catalysts that are constrained by finite contact areas between co-catalysts and reactants. (b) Photocatalytic activity on the K4Nb6O17 nanosheet catalysts with different molar ratio of TFA/K4Nb6O17. Reaction conditions: 50 mg catalyst, 200 mL 20 vol% methanol aqueous solution, and a specific amount of TFA, under irradiation of a 300-W Xe lamp. Representative ${\it\Delta}A$ kinetics probed at 500 nm (pump at 300 nm) for K4Nb6O17 in (c) the absence and (d) the presence of TFA. (e) Steady-state and (f) time-resolved PL spectra (excitation at 315 nm; emission at 430 nm) for both K4Nb6O17 and K4Nb6O17–TFA. (g) Schematic illustration of the charge separation mechanisms involving the electron/hole defect states-related dynamics. All the figures are adapted from Ref. [32].
    Tools

    Get Citation

    Copy Citation Text

    Qun Zhang, Yi Luo. Probing the ultrafast dynamics in nanomaterial complex systems by femtosecond transient absorption spectroscopy[J]. High Power Laser Science and Engineering, 2016, 4(3): 03000e22

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: ULTRAFAST DYNAMICS IN COMPLEX SYSTEMS

    Received: Mar. 31, 2016

    Accepted: Jun. 16, 2016

    Published Online: Nov. 7, 2016

    The Author Email:

    DOI:10.1017/hpl.2016.23

    Topics