Chinese Journal of Lasers, Volume. 49, Issue 10, 1002704(2022)

Research Advancement on Fabrication of Artificial Compound Eye Using Ultrafast Laser

Jiang Li1、*, Xiaojun Gao1, Zuoli Fu1, Wenjun Wang2、**, Xuesong Mei2, and Yuxiang Huang1
Author Affiliations
  • 1College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling 712100, Shaanxi, China
  • 2State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, Xian 710054, Shaanxi, China
  • show less
    References(65)

    [1] Li X H[D]. Manufacturing and testing research of new bionic compound eyes, 1-78(2013).

    [2] Ma M C, Zhang Y, Deng H X et al. Super-resolution and super-robust single-pixel superposition compound eye[J]. Optics and Lasers in Engineering, 146, 106699(2021).

    [3] Zhai Y Q, Niu J Q, Liu J Q et al. High numerical aperture imaging systems formed by integrating bionic artificial compound eyes on a CMOS sensor[J]. Optical Materials Express, 11, 1824-1834(2021).

    [4] Li J, Wang W J, Mei X S et al. Fabrication of artificial compound eye with controllable field of view and improved imaging[J]. ACS Applied Materials & Interfaces, 12, 8870-8878(2020).

    [5] Han Q Q, Zhai Y Q, Niu J Q et al. A multi-focusing curved artificial compound eye compatible with planar image sensors[J]. Microsystem Technologies, 27, 2257-2262(2021).

    [6] Chen C F, Zheng Y, Fang C L. Improvement of luminescence efficiency and stability of CsPbBr2 quantum dot films with microlens array structure[J]. Chinese Journal of Lasers, 48, 1313001(2021).

    [7] Li X M, Ding Y C, Shao J Y et al. Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes[J]. Advanced Materials, 24, OP165-OP169(2012).

    [8] Sun H D, Deng S F, Cui X B et al. Fabrication of microlens arrays with varied focal lengths on curved surfaces using an electrostatic deformed template[J]. Journal of Micromechanics and Microengineering, 24, 065008(2014).

    [9] Kuo W K, Lin S Y, Hsu S W et al. Fabrication and investigation of the bionic curved visual microlens array films[J]. Optical Materials, 66, 630-639(2017).

    [10] Zhang L, Zhou L Y, Zhou W C et al. Design, fabrication and testing of a compact large-field-of-view infrared compound eye imaging system by precision glass molding[J]. Precision Engineering, 66, 87-98(2020).

    [11] Liu P H, Li S Y, Wang W W et al. Preparation and properties of flexible liquid crystal micro-lens arrays[J]. Acta Photonica Sinica, 50, 0323001(2021).

    [12] Chen X X, Wu T L, Gong Z Y et al. Subwavelength imaging and detection using adjustable and movable droplet microlenses[J]. Photonics Research, 8, 225-234(2020).

    [13] Zhou L, Zhang X H, Lin X G et al. A planar artificial compound eye based on metalens array[J]. Acta Photonica Sinica, 50, 0623001(2021).

    [14] Li J Q, Yan J F, Li X et al. Research advancement on ultrafast laser microprocessing of transparent dielectrics[J]. Chinese Journal of Lasers, 48, 0202019(2021).

    [15] Chen T, Wang W J, Tao T et al. Weakening heat accumulation behavior caused by femtosecond pulses for high-performance antireflection micro-nano porous structures[J]. International Journal of Heat and Mass Transfer, 164, 120532(2021).

    [16] Gao X, Yan X, Yao X et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 19, 2213-2217(2007).

    [17] Wu D, Wang J N, Niu L G et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2, 751-758(2014).

    [18] Jeong K H, Kim J, Lee L P. Biologically inspired artificial compound eyes[J]. Science, 312, 557-561(2006).

    [19] Zhang F, Yang Q, Bian H et al. Rapid fabrication of large-area concave microlens array on ZnSe[J]. Micromachines, 12, 458(2021).

    [20] Yong J L, Chen F, Yang Q et al. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser[J]. ACS Applied Materials & Interfaces, 5, 9382-9385(2013).

    [21] Chen F, Liu H, Yang Q et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Optics Express, 18, 20334-20343(2010).

    [22] Hao B, Liu H W, Chen F et al. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces[J]. Optics Express, 20, 12939-12948(2012).

    [23] Meng X W, Chen F, Yang Q et al. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching[J]. Applied Physics A, 121, 157-162(2015).

    [24] Wei Y, Yang Q, Bian H et al. Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems[J]. Applied Surface Science, 457, 1202-1207(2018).

    [25] Meng X W, Chen F, Yang Q et al. A simple way to fabricate close-packed high numerical aperture microlens arrays[J]. IEEE Photonics Technology Letters, 25, 1336-1339(2013).

    [26] Deng Z F, Yang Q, Chen F et al. High-performance laser beam homogenizer based on double-sided concave microlens[J]. IEEE Photonics Technology Letters, 26, 2086-2089(2014).

    [27] Zhang F, Yang Q, Bian H et al. Fabrication of ZnSe microlens array for a wide infrared spectral region[J]. IEEE Photonics Technology Letters, 32, 1327-1330(2020).

    [28] Tong S Y, Bian H, Yang Q et al. Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching[J]. Optics Express, 22, 29283-29291(2014).

    [29] Chen F, Deng Z F, Yang Q et al. Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass[J]. Optics Letters, 39, 606-609(2014).

    [30] Deng Z F, Yang Q, Chen F et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Optics Letters, 40, 1928-1931(2015).

    [31] Liu M N, Li M T, Yang H et al. Etching-assisted femtosecond laser microfabrication[J]. Chinese Physics B, 27, 094212(2018).

    [32] Liu X Q, Chen Q D, Guan K M et al. Dry-etching-assisted femtosecond laser machining[J]. Laser & Photonics Reviews, 11, 1600115(2017).

    [33] Liu X Q, Yu L, Yang S N et al. Optical nanofabrication of concave microlens arrays[J]. Laser & Photonics Reviews, 13, 1800272(2019).

    [34] Liu X Q, Yu L, Chen Q D et al. Sapphire concave microlens arrays for high-fluence pulsed laser homogenization[J]. IEEE Photonics Technology Letters, 31, 1615-1618(2019).

    [35] Hu Y, Yang Q, Chen F et al. Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology[J]. Applied Surface Science, 292, 285-290(2014).

    [36] Luo Z, Wang C, Yin K et al. Rapid fabrication of cylindrical microlens array by shaped femtosecond laser direct writing[J]. Applied Physics A, 122, 1-5(2016).

    [37] Luo Z, Duan J A, Guo C. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica[J]. Optics Letters, 42, 2358-2361(2017).

    [38] Tian Z N, Yao W G, Xu J J et al. Focal varying microlens array[J]. Optics Letters, 40, 4222-4225(2015).

    [39] Yang Q, Tong S Y, Chen F et al. Lens-on-lens microstructures[J]. Optics Letters, 40, 5359-5362(2015).

    [40] Luo Z, Yin K, Dong X R et al. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser[J]. Optical Materials, 78, 465-470(2018).

    [41] Lu D X, Zhang Y L, Han D D et al. Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing[J]. Journal of Materials Chemistry C, 3, 1751-1756(2015).

    [42] Ou Y, Yang Q, Chen F et al. Direct fabrication of microlens arrays on PMMA with laser-induced structural modification[J]. IEEE Photonics Technology Letters, 27, 2253-2256(2015).

    [43] Meunier T, Villafranca A B, Bhardwaj R et al. Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses[J]. Optics Letters, 37, 4266-4268(2012).

    [44] Meunier T, Villafranca A B, Bhardwaj R et al. Mechanism for spherical dome and microvoid formation in polycarbonate using nanojoule femtosecond laser pulses[J]. Optics Letters, 37, 3168-3170(2012).

    [45] Shao J Y, Ding Y C, Zhai H P et al. Fabrication of large curvature microlens array using confined laser swelling method[J]. Optics Letters, 38, 3044-3046(2013).

    [46] Li J, Wang W J, Mei X S et al. The formation of convex microstructures by laser irradiation of dual-layer polymethylmethacrylate (PMMA)[J]. Optics & Laser Technology, 106, 461-468(2018).

    [47] Li J, Wang W J, Mei X S et al. Rapid fabrication of microlens arrays on PMMA substrate using a microlens array by rear-side picosecond laser swelling[J]. Optics and Lasers in Engineering, 126, 105872(2020).

    [48] Yong J L, Chen F, Yang Q et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 29, 3274-3279(2013).

    [49] Li M J, Yang Q, Yong J L et al. Underwater superoleophobic and anti-oil microlens array prepared by combing femtosecond laser wet etching and direct writing techniques[J]. Optics Express, 27, 35903-35913(2019).

    [50] Li M J, Yang Q, Chen F et al. Integration of great water repellence and imaging performance on a superhydrophobic PDMS microlens array by femtosecond laser microfabrication[J]. Advanced Engineering Materials, 21, 1800994(2019).

    [51] Bian H, Liang J, Li M J et al. Bioinspired underwater superoleophobic microlens array with remarkable oil-repellent and self-cleaning ability[J]. Frontiers in Chemistry, 8, 687(2020).

    [52] Shao J Y, Ding Y C, Wang W J et al. Generation of fully-covering hierarchical micro-/nano-structures by nanoimprinting and modified laser swelling[J]. Small, 10, 2595-2601(2014).

    [53] Wang W J, Li J, Li R H et al. Fabrication of hierarchical micro/nano compound eyes[J]. ACS Applied Materials & Interfaces, 11, 34507-34516(2019).

    [54] Li J, Wang W J, Mei X S et al. Artificial compound eyes prepared by a combination of air-assisted deformation, modified laser swelling, and controlled crystal growth[J]. ACS Nano, 13, 114-124(2019).

    [55] Wu D, Wu S Z, Niu L G et al. High numerical aperture microlens arrays of close packing[J]. Applied Physics Letters, 97, 031109(2010).

    [56] Wu D, Wang J N, Niu L G et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2, 751-758(2014).

    [57] Ma Z C, Hu X Y, Zhang Y L et al. Smart compound eyes enable tunable imaging[J]. Advanced Functional Materials, 29, 1903340(2019).

    [58] Bian H, Wei Y, Yang Q et al. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process[J]. Applied Physics Letters, 109, 221109(2016).

    [59] Liu X Q, Yang S N, Yu L et al. Rapid engraving of artificial compound eyes from curved sapphire substrate[J]. Advanced Functional Materials, 29, 1900037(2019).

    [60] Cao X W, Chen Q D, Zhang L et al. Single-pulse writing of a concave microlens array[J]. Optics Letters, 43, 831-834(2018).

    [61] Qu P B, Chen F, Liu H W et al. A simple route to fabricate artificial compound eye structures[J]. Optics Express, 20, 5775-5782(2012).

    [62] Liu H W, Chen F, Yang Q et al. Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections[J]. Applied Physics Letters, 100, 133701(2012).

    [63] Deng Z F, Chen F, Yang Q et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging[J]. Advanced Functional Materials, 26, 1995-2001(2016).

    [64] Liu F, Bian H, Zhang F et al. IR artificial compound eye[J]. Advanced Optical Materials, 8, 1901767(2020).

    [65] Cao J J, Hou Z S, Tian Z N et al. Bioinspired zoom compound eyes enable variable-focus imaging[J]. ACS Applied Materials & Interfaces, 12, 10107-10117(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jiang Li, Xiaojun Gao, Zuoli Fu, Wenjun Wang, Xuesong Mei, Yuxiang Huang. Research Advancement on Fabrication of Artificial Compound Eye Using Ultrafast Laser[J]. Chinese Journal of Lasers, 2022, 49(10): 1002704

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 9, 2021

    Accepted: Nov. 9, 2021

    Published Online: May. 9, 2022

    The Author Email: Jiang Li (2020110132@nwafu.edu.cn), Wenjun Wang (wenjunwang@xjtu.edu.cn)

    DOI:10.3788/CJL202249.1002704

    Topics