Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0437008(2025)

Lightweight Underwater Optical Image Recognition Algorithm Based on YOLOv8

Shun Cheng1,2、*, Jianrong Li1, Zhiqian Wang1, Shaojin Liu1, and Muyuan Wang1,2
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin , China
  • 2Daheng College, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(18)
    Comparison of the image enhancement effects
    Structure of the SCDDI-YOLOv8 model
    Structure of the C2f_SENetv2 network
    Structure of the CCFM network
    Structure of the DySample network
    Structure of the DyHead network
    Schematic diagram of the MPDIoU calculation
    Validation results on the URPC2020 dataset using different algorithms
    • Table 1. Quantitative analysis of the enhanced algorithms

      View table

      Table 1. Quantitative analysis of the enhanced algorithms

      AlgorithmInformation entropyMeanStandard deviationAverage gradient
      ACE7.520.360.19459
      DCP7.510.530.34419
      HE7.970.500.28378
      AHE7.290.350.16386
      MSR7.520.630.19196
      SSR5.540.800.0669
      Laplace enhancement6.920.290.13226
      Gamma transform6.440.120.12138
    • Table 2. Enhancement effect by ACE

      View table

      Table 2. Enhancement effect by ACE

      MethodAPmAP50mAP50‒90
      EchinusStarfishHolothurianScallop
      URPC69.790.682.463.476.539.9
      URPC+ACE enhanced70.689.983.265.177.242.9
    • Table 3. Results of parameters for different detection models

      View table

      Table 3. Results of parameters for different detection models

      ModelParameters /106mAP50 /%mAP50‒90 /%FLOPs /109Model size /MB
      YOLOv3-tiny8.6771.034.612.917.4
      YOLOv5n7.0279.244.915.814.4
      YOLOv7-tiny6.0274.938.413.212.3
      YOLOv8n3.0076.742.98.16.3
      YOLOv9c25.3079.945.6102.351.6
      RT-DETR15.5079.844.539.731.5
      SCDDI-YOLOv82.3877.341.47.55.1
    • Table 4. Detection effect of different models on the UWG dataset

      View table

      Table 4. Detection effect of different models on the UWG dataset

      ModelParameters /106mAP50 /%mAP50‒90 /%FLOPs /109Model size /MB
      YOLOv8n3.0069.744.38.16.3
      RT-DETR15.5964.541.637.631.5
      SCDDI-YOLOv82.3871.544.57.55.1
    • Table 5. Performance comparison of different backbone networks

      View table

      Table 5. Performance comparison of different backbone networks

      Backbone networkParameters /106mAP50 /%mAP50‒90 /%FLOPs /109Model size /MB
      SENetV23.0076.643.512.96.3
      MobileNetV35.6577.343.610.711.7
      ShuffleNetV22.7975.441.77.45.9
      EfficientNetV221.7580.345.755.144.3
      GhostNetV26.3074.741.68.713.3
      EfficientViT24.0175.342.09.58.7
      RepViT4.1276.842.911.88.7
      SwinTransformer29.9073.439.8402.160.5
      PPHGNetV212.0078.344.429.224.3
    • Table 6. Performance comparison of different neck networks

      View table

      Table 6. Performance comparison of different neck networks

      Neck networkParameters /106mAP50 /%FLOPs /109Model size /MB
      CCFM1.9675.66.74.2
      Slim-Neck2.7976.37.45.9
      BiFPN2.7877.48.15.8
      RepGFPN3.2875.68.56.8
      Gold-YOLO8.0676.417.616.6
      ASF-YOLO3.0576.38.66.4
    • Table 7. Performance comparison of different samplers

      View table

      Table 7. Performance comparison of different samplers

      SamplerParameters /106mAP50 /%FLOPs /109Model size /MB
      DySample3.0176.712.96.3
      CARAFE3.1476.38.46.5
    • Table 8. Performance comparison of different detection heads

      View table

      Table 8. Performance comparison of different detection heads

      Detection headParameters /106mAP50 /%FLOPs /109Model size /MB
      DyHead2.5077.07.85.3
      Detect_FRM87.9075.876.3176.2
      Detect_FASFF4.3175.115.49.1
      Detect_ASFF4.3776.110.49.0
      RT-DETR_Decoder9.4871.816.719.2
    • Table 9. Comparison of loss functions

      View table

      Table 9. Comparison of loss functions

      Loss functionAPmAP50mAP50‒90
      EchinusStarfishHolothurianScallop
      InnerMPDIoU70.990.682.064.777.140.6
      MPDIoU71.890.381.163.376.640.5
      InnerCIoU71.590.082.663.777.040.6
      InnerWIoU58.977.663.239.959.928.3
      InnerSIoU70.390.581.963.276.540.2
    • Table 10. Results of the ablation experiments on the URPC2020 dataset

      View table

      Table 10. Results of the ablation experiments on the URPC2020 dataset

      MethodSENetV2CCFMDyHeadDySampleInnerMPDIoUParameters /106mAP50 /%mAP50‒90 /%FLOPs /109Model size /MB
      a3.0076.742.98.16.3
      b3.0076.643.512.96.3
      c1.9675.642.56.74.2
      d2.5077.043.47.85.3
      e3.0176.743.08.26.3
      f3.0077.140.68.16.3
      g2.7876.543.27.85.9
      h2.3077.243.57.55.1
      i2.3875.642.77.55.1
      j2.3877.341.47.55.1
    Tools

    Get Citation

    Copy Citation Text

    Shun Cheng, Jianrong Li, Zhiqian Wang, Shaojin Liu, Muyuan Wang. Lightweight Underwater Optical Image Recognition Algorithm Based on YOLOv8[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0437008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: May. 17, 2024

    Accepted: Jul. 29, 2024

    Published Online: Feb. 10, 2025

    The Author Email:

    DOI:10.3788/LOP241313

    CSTR:32186.14.LOP241313

    Topics