International Journal of Digestive Diseases, Volume. 45, Issue 3, 133(2025)
[in Chinese]
[1] [1] Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis[J]. Lancet, 2023, 402(10401): 571-584.
[2] [2] Chen R, Du J, Zhu H, et al. The role of cGAS-STING signalling in liver diseases[J]. JHEP Rep, 2021, 3(5): 100324.
[3] [3] Sun T, Wang P, Zhai X, et al. Neutrophil extracellular traps induce barrier dysfunction in DSS-induced ulcerative colitis via the cGAS-STING pathway[J]. Int Immunopharmacol, 2024, 143(Pt 1): 113358.
[4] [4] Flood P, Fanning A, Woznicki JA, et al. DNA sensor-associated type Ⅰ interferon signaling is increased in ulcerative colitis and induces JAK-dependent inflammatory cell death in colonic organoids[J]. Am J Physiol Gastrointest Liver Physiol, 2022, 323(5): G439-G460.
[5] [5] Espaillat MP, Kew RR, Obeid LM. Sphingolipids in neutrophil function and inflammatory responses: Mechanisms and implications for intestinal immunity and inflammation in ulcerative colitis[J]. Adv Biol Regul, 2017, 63: 140-155.
[6] [6] Wan Y, Yang L, Jiang S, et al. Excessive apoptosis in ulcerative colitis: crosstalk between apoptosis, ROS, ER stress, and intestinal homeostasis[J]. Inflamm Bowel Dis, 2022, 28(4): 639-648.
[7] [7] Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease[J]. J Dig Dis, 2017, 18(9): 495-503.
[8] [8] Rabe H, Malmquist M, Barkman C, et al. Distinct patterns of naive, activated and memory T and B cells in blood of patients with ulcerative colitis or Crohn's disease[J]. Clin Exp Immunol, 2019, 197(1): 111-129.
[9] [9] Uthaman S, Parvinroo S, Mathew AP, et al. Inhibiting the cGAS-STING pathway in ulcerative colitis with programmable micelles[J]. ACS Nano, 2024, 18(19): 12117-12133.
[10] [10] Ueno A, Jeffery L, Kobayashi T, et al. Th17 plasticity and its relevance to inflammatory bowel disease[J]. J Autoimmun, 2018, 87: 38-49.
[11] [11] Ablasser A, Chen ZJ. cGAS in action: Expanding roles in immunity and inflammation[J]. Science, 2019, 363(6431): eaat8657.
[12] [12] Chen C, Zhang Y, Tao M, et al. Atrial natriuretic peptide attenuates colitis via inhibition of the cGAS-STING pathway in colonic epithelial cells[J]. Int J Biol Sci, 2022, 18(4): 1737-1754.
[13] [13] Zhang D, Liu Y, Zhu Y, et al. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis[J]. Nat Cell Biol, 2022, 24(5): 766-782.
[14] [14] Ke X, Hu T, Jiang M. cGAS-STING signaling pathway in gastrointestinal inflammatory disease and cancers[J]. FASEB J, 2022, 36(1): e22029.
[15] [15] Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway[J]. Immunity, 2020, 53(1): 43-53.
[16] [16] Di Vincenzo F, Yadid Y, Petito V, et al. Circular and circulating DNA in inflammatory bowel disease: from pathogenesis to potential molecular therapies[J]. Cells, 2023, 12(15): 1953.
[17] [17] Shmuel-Galia L, Humphries F, Lei X, et al. Dysbiosis exacerbates colitis by promoting ubiquitination and accumulation of the innate immune adaptor STING in myeloid cells[J]. Immunity, 2021, 54(6): 1137-1153. e8.
[18] [18] Long J, Yang C, Zheng Y, et al. Notch signaling protects CD4 T cells from STING-mediated apoptosis during acute systemic inflammation[J]. Sci Adv, 2020, 6(39): eabc5447.
[19] [19] Wu J, Chen YJ, Dobbs N, et al. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death[J]. J Exp Med, 2019, 216(4): 867-883.
[20] [20] Zhong Y, Xiao Q, Huang J, et al. Ginsenoside Rg1 alleviates ulcerative colitis in obese mice by regulating the gut microbiota-lipid metabolism-Th1/Th2/Th17 cells axis[J]. J Agric Food Chem, 2023, 71(50): 20073-20091.
[21] [21] Lv L, Chen Z, Bai W, et al. Taurohyodeoxycholic acid alleviates trinitrobenzene sulfonic acid induced ulcerative colitis via regulating Th1/Th2 and Th17/Treg cells balance[J]. Life Sci, 2023, 318: 121501.
[22] [22] Hu Y, Tang J, Xie Y, et al. Gegen Qinlian decoction ameliorates TNBS-induced ulcerative colitis by regulating Th2/Th1 and Tregs/Th17 cells balance, inhibiting NLRP3 inflammasome activation and reshaping gut microbiota[J]. J Ethnopharmacol, 2024, 328: 117956.
[23] [23] Gong W, Liu P, Zhao F, et al. STING-mediated Syk signaling attenuates tumorigenesis of colitis-associated colorectal cancer through enhancing intestinal epithelium pyroptosis[J]. Inflamm Bowel Dis, 2022, 28(4): 572-585.
[24] [24] Cho H, Kelsall BL. The role of typeⅠ interferons in intestinal infection, homeostasis, and inflammation[J]. Immunol Rev, 2014, 260(1): 145-167.
[25] [25] Roemhild K, von Maltzahn F, Weiskirchen R, et al. Iron metabolism: pathophysiology and pharmacology[J]. Trends Pharmacol Sci, 2021, 42(8): 640-656.
[26] [26] Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023, 14(3): 205.
[27] [27] Mao C, Liu X, Zhang Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586-590.
[28] [28] Zhou C, Li L, Li T, et al. SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1[J]. J Mol Med (Berl), 2020, 98(8): 1189-1202.
[29] [29] He H, Du L, Xue H, et al. Triple tumor microenvironment-responsive ferroptosis pathways induced by manganese-based imageable nanoenzymes for enhanced breast cancer theranostics[J]. Small Methods, 2023, 7(7): e2300230.
[30] [30] Asano J, Sato T, Ichinose S, et al. Intrinsic autophagy is required for the maintenance of intestinal stem cells and for irradiation-induced intestinal regeneration[J]. Cell Rep, 2017, 20(5): 1050-1060.
[31] [31] Qin Y, Ge G, Yang P, et al. An update on adipose-derived stem cells for regenerative medicine: where challenge meets opportunity[J]. Adv Sci (Weinh), 2023, 10(20): e2207334.
[32] [32] Hu Q, Knight PH, Ren Y, et al. The emerging role of stimulator of interferons genes signaling in sepsis: Inflammation, autophagy, and cell death[J]. Acta Physiol (Oxf), 2019, 225(3): e13194.
[33] [33] Foerster EG, Mukherjee T, Cabral-Fernandes L, et al. How autophagy controls the intestinal epithelial barrier[J]. Autophagy, 2022, 18(1): 86-103.
[34] [34] Ganapathy AS, Saha K, Suchanec E, et al. AP2M1 mediates autophagy-induced CLDN2 (claudin 2) degradation through endocytosis and interaction with LC3 and reduces intestinal epithelial tight junction permeability[J]. Autophagy, 2022, 18(9): 2086-2103.
[35] [35] Trentesaux C, Fraudeau M, Pitasi CL, et al. Essential role for autophagy protein ATG7 in the maintenance of intestinal stem cell integrity[J]. Proc Natl Acad Sci U S A, 2020, 117(20): 11136-11146.
[36] [36] Zheng W, Xia N, Zhang J, et al. How the innate immune DNA sensing cGAS-STING pathway is involved in autophagy[J]. Int J Mol Sci, 2021, 22(24): 13232.
[37] [37] Liu J, Zhou J, Luan Y, et al. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation[J]. Cell Commun Signal, 2024, 22(1): 22.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. [J]. International Journal of Digestive Diseases, 2025, 45(3): 133
Category:
Received: May. 31, 2024
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: (zhbingyong@sina.com)