Piezoelectrics & Acoustooptics, Volume. 45, Issue 6, 926(2023)
Research Progress in Lithium Niobate Bonding Technology for Optoelectronic Devices
[6] [6] CHU K,PARK S,LEE C,et al.Effect of multiple flip chip assembly on the mechanical reliability of eutectic Au-Sn solder joint[J].Journal of Materials Science:Materials in Electronics,2016,27(9):9941-9946.
[7] [7] GIBSON P S,KATHERINE H,KEVIN S J,et al.Single step bonding of thick anodized aluminum oxide templates to silicon wafers for enhanced system on a chip performance[J].Journal of Power Sources,2020,474:228643.
[8] [8] WU D W,TIAN W C,WANG C Q,et al.Research of wafer level bonding process based on Cu-Sn eutectic[J].Micromachines,2020,11(9):789.
[9] [9] CHEN Z H,YU D Q,ZHONG Y.Development of 3D wafer level hermetic packaging withthrough glass vias and transient liquid phasebonding technology for RF Filter[J].Sensors,2022,22(6):2114.
[10] [10] YANG S,QU Y F,DENG N K,et al.Effects of surface activation time on Si-Si direct wafer bonding at room temperature[J].Materials Research Express,2021,8 (8):1543.
[16] [16] ZHU H Q,ZHU H,WANG K,et al,Terahertz master-oscil-lator power-amplifier quantum Cascade laser with control-lable polarization[J].Appl Phys Lett,2020,117:02110.
[17] [17] LOMONACO Q,ABADIE K,MORALES C,et al.Stress engineering in germanium-silicon heterostructure using surface activated hot bonding[J].ECS Transactions,2022,109(4):1503-1509.
[18] [18] HU L X,GOH S C K,TAO J,et al.Time dependent evolution study of Ar/N2 plasma-activated Cu surface for enabling two-step Cu-Cu direct bonding in a non-vacuum environment[J].ECS Journal of Solid State Science and Technology,2021,10:12.
[19] [19] YANG S,QU Y F,DENGN K,et al.Effects of surface activation time on Si-Si direct wafer bonding at room temperature[J].Materials Research Express,2021,8 (8):1543.
[20] [20] ZHAO Y Q,LIU W,BAOY D,et al.Plasma-activated GaAs/Si wafer bonding with high mechanical strength and electrical conductivity[J].Materials Science in Semiconductor Processing,2022,143: 106481.
[24] [24] HE M B,XU M Y,REN Y X,et al.High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J].Nature Photonics,2019,13(5):359-364.
[25] [25] XU M Y,HE M B,WEN X Q,et al.Hybrid silicon and lithium niobate michelson interferometer modulator[J].APL Photonics,2019,10(4):1-3.
[26] [26] ROELKENS G,VAN THOURHOUT D,BAETS R.Semiconductor technology-ultra-thin benzocyclobutene bonding of III-V dies onto SOI substrate[J].Electronics Letters,2005,41(9):561.
[27] [27] SONG Z,WU D,ZHU H,et al.Void-formation in uncured and partially-cured BCB bonding adhesive on patterned surfaces[J].Microelectronic Engineering,2015,137:164-168.
[28] [28] TAKIGAWA R,HIGURASHI E,SUGAT,et al.Room-temperature transfer bonding of lithium niobate thin film on micromachined silicon substrate with Au microbumps[J].Sensors and Actuators,A:Physical,2017,264:274-281.
[29] [29] KAWANO H,TAKIGAWA R,IKENOUE H,et al.Bonding of lithium niobate to silicon in ambient air using laser irradiation[J].Jpn J Appl Phys,2016,55(8):8-9.
[30] [30] TAKIGAWA R,KAWANO H,IKENOUE H,et al.Investigation of the interface between LiNbO3 and Si wafers bonded by laser irradiation[J].Jpn J Appl Phys,2017,56(8):088002.
[31] [31] SHUAI Y,GONG C,BAI X,et al.Fabrication of Y128-and Y36-cut lithium niobate singlecrystalline thin films by crystal-ion-slicing technique[J].Jpn J Appl Phys,2018,57(4 Suppl.):1-5.
[32] [32] WANG C,ZHANG M,CHEN X,et al.Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages [J].Nature,2018,562(7725):101-104.
[38] [38] TAKIGAWA R,HIGURASHI E,ASANO T.Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding method[J].Jpn J Appl Phys,2018,57(6):1-5.
[39] [39] WANG C X,TADATOMO S.Room-temperature direct bonding using fluorine containing plasma activation[J].Journal of The Electrochemical Society,2011,158(5):525-529.
[42] [42] XU J K,DU Y,TIAN Y H,et al.Progress in wafer bonding technology towards MEMS,high-power electronics,optoelectronics,and optofluidics[J].International Journal of Optomechatronics,2020,14(1):94-118.
[44] [44] JIANG M,YU M,LI B,et al.Al-Sn-Al bonding strength investigation based on deep learning model[J].Processes,2022,10(10):1899.
[45] [45] YOO S L,GUN-DUK K,KIM W J,et al.Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices[J].Optics Letters,2011,36(7):1119-1121.
[46] [46] CHEN L,WOOD M G,REANO R M.12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes [J].Optics Express,2013,21(22):27003-27010.
[47] [47] CAI L,KONG R,WANG Y,et al.Channel waveguides and Y-junctions in X-cut single-crystal lithium niobate thin film[J].Optics Express,2015,23(22):29211-29221.
[48] [48] WANG M K,LI J H,YAO H,et al.A cost-effective edge couple with high polarization selectivity for thin film lithium niobate modulators[J].Journal of Lightwave Technology,2022,40(4):1105-1111.
[51] [51] WEIGEL P,ZHAO J,FANG K,et al.Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth [J].Optics Express,2018,26(18): 23728-23739.
[52] [52] XU Mengyue,CHEN Wenjun,HE Mingbo,et al.Michelson interferometer modulator based on hybrid silicon and lithium niobate platform[J].Apl Photonics,2019,10(4):100802.
[53] [53] THOMASCHEWSKI M,ZENIN V A,WOLFF C,et al.Plasmonic monolithic lithium niobate directional coupler switches[J].Nature Communications,2020,11(1):1-6.
[54] [54] AHMED A R,NELAN S,SHI S Y,et al.Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform[J].Optics Letters,2020,45(5):1112-115.
[57] [57] PARFENOV M,AGRUZOV P,ILICHEV I,et al.Design of hybrid waveguide structures for high efficiency integrated optical superconducting single photon detectors on Ti∶LiNbO3 waveguides[J].IEEE Photonics Journal,2021,13(6):1-7.
Get Citation
Copy Citation Text
KONG Hui, SHEN Hao, ZHANG Zhongwei, QIAN Yu, PU Siqi, XU Qiufeng, WANG Qinfeng. Research Progress in Lithium Niobate Bonding Technology for Optoelectronic Devices[J]. Piezoelectrics & Acoustooptics, 2023, 45(6): 926
Received: Jul. 20, 2023
Accepted: --
Published Online: Jan. 4, 2024
The Author Email: