Laser Technology, Volume. 47, Issue 5, 700(2023)
Multi-resolution point cloud completion fusing graph attention
[1] [1] MIAO Y W, LIU J Z, CHEN J H, et al. Structure-preserving shape completion of 3D point clouds with generative adversarial network[J]. SCIENTIA SINICA Informationis, 2020, 50(5): 675-691(in Chin-ese).
[2] [2] GUO Y L, WANG H Y, HU Q Y, et al. Deep learning for 3D point clouds: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4338-4364.
[3] [3] PAULY M, MITRA N J, WALLNER J, et al. Discovering structural regularity in 3D geometry[J]. ACM Transactions on Graphics, 2008, 27(3): 287-297.
[4] [4] ZHAO J H, SUN M Y, WANG Y R, et al. Review of three-dimensional point cloud completion methods[J].Science of Surveying and Mapping, 2021, 46(1): 114-123 (in Chinese).
[5] [5] LI Y Y, DAI A, GUIBAS L, et al. Database-assisted object retrieval for real-time 3D reconstruction[J]. Computer Graphics Forum, 2015, 34(2): 435-446.
[6] [6] DAI X S, HUA X H, TIAN P J, et al. A point cloud registration method based on axial deviation ratio[J]. Science of Surveying and Mapping, 2021, 46(12): 98-105 (in Chinese).
[7] [7] LIU C L, TAO Y X, LUO X B, et al. Hyperspectral image classification based on hybrid convolutional neural network [J]. Laser Technology, 2022, 46(3): 355-361(in Chinese).
[9] [9] QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3D classification and segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2017:77-85.
[10] [10] YUAN W T, KHOT T, HELD D, et al. PCN: Point completion network[C]//2018 International Conference on 3D Vision. Verona, Italy: IEEE, 2018: 728-737.
[11] [11] HUANG Z, YU Y, XU J, et al. PF-Net: Point fractal network for 3D point cloud completion[C]//Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020: 7659-7667.
[12] [12] LEDIG C, THEIS L, HUSZAR F, et al. Photo realistic single image super-resolution using a generative adversarial network[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 4681-4690.
[13] [13] ZHENG K, LI J Sh, WANG J Q, et al. DCLS-GAN: Cloud removal method for plateau area of TH-1 satellite image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 248-259 (in Chinese).
[14] [14] LIU X P, MA Y X, XU K, et al. Multi-scale transformer based point cloud completion network[J]. Journal of Image and Graphics, 2022, 27(2): 538-549 (in Chinese).
[15] [15] QI C R, YI L, SU H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[C]// 31st Annual Conference on Neural Information Processing Systems. Cambridge, USA: Massachusetts Institute of Technology Press, 2017: 5099-5108.
[16] [16] CHEN C, FRAGONARA L Z, TSOURDOS A. GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud[J]. Neurocomputing, 2021, 438(20): 122-132.
[17] [17] YANG Y, FENG C, SHEN Y, et al. FoldingNet: Point cloud auto-encoder via deep grid deformation[C]//Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018:206-215.
[18] [18] MIAO Y W, LIU J Z, SUN Y L, et al. Point cloud completion of indoor scenes based on category-instance segmentation[J]. Chinese Journal of Computers, 2021, 44(11): 2189-2202(in Chinese).
[19] [19] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]//31st International Conference on Neural Information Processing Systems. Washington, USA: IEEE, 2017:5769-5779.
[20] [20] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: International Conference on Machine Learning, 2017: 214-223.
[21] [21] FAN H Q, SU H, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]//Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 2463-2471.
[22] [22] ACHLIOPTAS P, DIAMANTI O, MITLIAGKAS I, et al. Learning representations and generative models for 3D point clouds[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: International Conference on Machine Learning, 2018: 40-49.
[23] [23] ZHAO Y H, BIRDAL T, DENG H W, et al. 3D point capsule networks[C]//Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2019: 1009-1018.
Get Citation
Copy Citation Text
PAN Lilin, SHAO Jianfei. Multi-resolution point cloud completion fusing graph attention[J]. Laser Technology, 2023, 47(5): 700
Category:
Received: Jul. 25, 2022
Accepted: --
Published Online: Dec. 11, 2023
The Author Email: SHAO Jianfei (1156468319@qq.com)