AEROSPACE SHANGHAI, Volume. 42, Issue 3, 147(2025)
Research on Fast-charged Lithium-ion Battery
[5] R WANG, X LI, B ZHANG et al. Effect of methylene methaneisulfonate as an additive on the cycling performance of spinel lithium titanate electrode. J.Alloys Comp., 648, 512-520(2015).
[6] N S CHOI, K H YEW, K Y LEE et al. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J.Power Sources, 161, 1254-1259(2006).
[7] V ETACHERI, O HAIK, Y GOFFER et al. Effect of fluoroethylene carbonate(FEC) on the performance and surface chemistry of Si-nanowire li-Ion battery anodes. Langmuir, 28, 965-976(2012).
[8] J S KIM, D BYUN, J K LEE. Electrochemical characteristics of amorphous silicon thin film electrode with fluoroethylene carbonate additive. Curr.Appl.Phys., 14, 596-602(2014).
[9] G VENUGOPAL, J MOORE, J HOWARD, S PENDALWAR. Characterization of microporous separators for lithium-ion batteries. Journal of Power Source, 77, 31-34(1999).
[11] J NEWMAN, W TIEDEMANN. Potential and current distribution in electrochemical cells interpretation of the half-cell voltage measurements as a function of reference-electrode location. Journal of the Electrochemical Society, 140, 1961-1968(1993).
[12] K TANG, X Q YU, J P SUN et al. Kinetic analysis on LiFePO4 thin films by CV,GITT,and EIS. Electrochimica Acta, 56, 4869-4875(2011).
[13] J XU, CH T MI, B G CAO et al. The state of charge estimation of lithium-ion batteries based on a proportional-integral observer. IEEE Transactions on Vehicular Technology, 63, 1614-1621(2014).
[14] X P TANG, Y J WANG, Z H CHEN. A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer. Journal of Power Sources, 296, 23-29(2015).
[19] J HASSOUN, S PANERO, P REALE et al. A new safe high-rate and high-energy polymer lithium-ion battery. Advanced Materials, 21, 4807-4810(2009).
[20] N KIM, S CHAE, J MA et al. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nature Communications, 8(2017).
[21] T F YI, J MEI, Y R ZHU. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. Journal of Power Sources, 316, 85-105(2016).
[22] C LIN, X FAN, Y XIN et al. Li4 Ti5 O12-based anode materials with low working potentials,high rate capabilities and high cyclability for high-power lithium-ion batteries:a synergistic effect of doping,incorporating a conductive phase and reducing the particle size. Journal of Materials Chemistry A, 2, 9982-9993(2014).
[23] S H HA, Y J LEE. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes. Chemistry, 21, 2132-2138(2015).
[25] H LEE, M YANILMAZ, O TOPRAKCI et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy&Environmental Science, 7, 3857-3886(2014).
[26] G FENG, Z LI, L MI et al. Polypropylene /hydrophobic-silicaaerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. Journal of Power Sources, 376, 177-183(2018).
[27] L WANG, Z WANG, Y SUN et al. Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator. Journal of Membrane Science, 572, 512-519(2019).
[28] H Y GUAN, F LIAN, Y REN et al. Comparative study of different membranes as separators for rechargeable lithium-ion batteries. International Journal of Minerals,Metallurgy,and Materials, 20, 598-603(2013).
[29] J SHENG, S TONG, Z HE et al. Recent developments of cellulose materials for lithium-ion battery separators. Cellulose, 24, 4103-4122(2017).
[30] X ZHOU, L YUE, J ZHANG et al. A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator. Journal of the Electrochemical Society, 160, A1341-A1347(2013).
[31] W CHEN, Y LIU, Y MA et al. Improved performance of lithium ion battery separator enabled by co- electrospinnig polyimide /poly (vinylidene fluorideco-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). Journal of Power Sources, 273, 1127-1135(2015).
[32] E CHOI, S LEE. Particle size-dependent,tunable porous structure of a SiO2 /poly (vinylidene fluoride-hexafluropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. Journal of Materials Chemistry, 21, 14747-14754(2011).
[34] H HONBO, K TAKEI, Y ISHII et al. Eletrochemical properties and Li deposition morphologies of surface modified graphite after grinding. Journal of Power Sources, 189, 337-343(2009).
[35] S TIPPMANN, D WALPER, L BALBOA et al. Low-temperature charging of lithium-ion cells part I:Electrochemical modeling and experimental investigation of degradation behavior. Journal of Power Sources, 252, 305-316(2014).
[36] C BRISSOT, M ROSSO, J N CHAZALVIEL et al. In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochimica Acta, 43, 1569-1574(1998).
[37] Z Y ZENG, W I LIANG, H G LIAO et al. Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Letters, 14, 1745-1750(2014).
Get Citation
Copy Citation Text
Chaoxiang XIE, Shenhang WANG, Ruishi LIN, Chuanjie SHEN, Tao ZHANG. Research on Fast-charged Lithium-ion Battery[J]. AEROSPACE SHANGHAI, 2025, 42(3): 147
Category: Guidance, Navigation, Control and Electronics
Received: Jul. 20, 2024
Accepted: --
Published Online: Sep. 29, 2025
The Author Email: