Journal of Applied Optics, Volume. 46, Issue 4, 793(2025)
Infrared and visible image fusion algorithm based on chrominance loss in high exposure scenes
[4] LI Jingyu, ZHANG Rongfen, LIU Yuhong. Multi-scale image fusion enhancement algorithm based on wavelet transform[J]. Optical Technique, 47, 217-222(2021).
[5] HAO Shuai, AN Beiyi, FU Zhouxing, et al. Infrared and visible image fusion algorithm based on wavelet transform and anisotropic diffusion[J]. Journal of Xi 'an University of Science and Technology, 42, 184-190(2022).
[7] ZHAO Wei, HUANG Jingjing, TIAN Bin. Research on image fusion algorithm based on receptive field model[J]. Acta Electronica Sinica, 9, 1665-1669(2008).
[8] LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 28, 2614-2623(2018).
[10] JIAN L, YANG X, LIU Z, et al. SEDRFuse: a symmetric encoder–decoder with residual block network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-15(2020).
[14] TANG L, YUAN J, ZHANG H, et al. PIAFusion: a progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 83, 79-92(2022).
[15] XU H, MA J, JIANG J, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518(2020).
[18] PIELLA G, HEIJMANS H. A new quality metric for image fusion[C], 3, III-173(2003).
[20] PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 32, 7960-7972(2019).
Get Citation
Copy Citation Text
Tianlei MA, Yu DOU, Xikui MIAO, Xianhua FENG, Zhiqiang KAI. Infrared and visible image fusion algorithm based on chrominance loss in high exposure scenes[J]. Journal of Applied Optics, 2025, 46(4): 793
Category:
Received: Feb. 19, 2024
Accepted: --
Published Online: Sep. 16, 2025
The Author Email: Yu DOU (窦宇)