Optics and Precision Engineering, Volume. 32, Issue 8, 1241(2024)

Dense control valve parts dataset for industrial object detection

Linyi WANG1, Jing BAI1,3、*, Yanmei LI2, and Wenjing LI1
Author Affiliations
  • 1Department of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2Mount Liupan Laboratory, Yinchuan75001, China
  • 3Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan750021, China
  • show less
    References(27)

    [1] SUN X Y, YANG S S, ZHAO C. Lightweight industrial image classifier based on federated few-shot learning[J]. IEEE Transactions on Industrial Informatics, 19, 7367-7376(2023).

    [2] AGGARWAL A, KUMAR V, GUPTA R. Object detection based approaches in image classification: a brief overview[C], 1-6(2023).

    [3] YASMINE G, MAHA G, HICHAM M. Overview of single-stage object detection models: from yolov1 to Yolov7[C], 1579-1584(2023).

    [4] [4] 庄存波, 刘检华, 隋秀峰, 等. 工业互联网推动离散制造业转型升级的发展现状、技术体系及应用挑战[J]. 计算机集成制造系统, 2019, 25(12): 3061-3069. doi: 10.13196/j.cims.2019.12.008ZHUANGC B, LIUJ H, SUIX F, et al. Status, technical architecture and application challenges for transformation and updating of discrete manufacturing industry driven by industrial Internet[J]. Computer Integrated Manufacturing Systems, 2019, 25(12): 3061-3069.(in Chinese). doi: 10.13196/j.cims.2019.12.008

    [5] WANG Y T, SHEN W W. Mechanical parts detection algorithm based on enhanced faster R-CNN[C], 4348-4353(2021).

    [6] EVERINGHAM M, MALI ESLAMI S, VAN GOOL L et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 111, 98-136(2015).

    [7] LIN T Y, MAIRE M, BELONGIE S et al. Microsoft COCO Common Objects in Context[M]. Computer Vision-ECCV 2014, 740-755(2014).

    [8] KUZNETSOVA A, ALLDRIN N et al. The open images dataset V4[J]. International Journal of Computer Vision, 128, 1956-1981(2020).

    [9] DENG J, DONG W, SOCHER R et al. ImageNet: a large-scale hierarchical image database[C], 248-255(2009).

    [10] DROST B, ULRICH M, BERGMANN P et al. Introducing MVTec ITODD-a dataset for 3D object recognition in industry[C], 2200-2208(2017).

    [11] HODAN T, HALUZA P, OBDRŽÁLEK Š et al. T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects[C], 880-888(2017).

    [12] TABERNIK D, ŠELA S, SKVARČ J et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 31, 759-776(2020).

    [13] KHALILIAN S, HALLAJ Y, BALOUCHESTANI A et al. PCB defect detection using denoising convolutional autoencoders[C], 1-5(2020).

    [14] HE Y, SONG K C, MENG Q G et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 69, 1493-1504(2020).

    [15] CHEN H X, DU Y Z, FU Y Q et al. DCAM-net: a rapid detection network for strip steel surface defects based on deformable convolution and attention mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 72, 5005312(2023).

    [16] WANG W Y, MI C F, WU Z H et al. A real-time steel surface defect detection approach with high accuracy[J]. IEEE Transactions on Instrumentation and Measurement, 71, 5005610(2021).

    [17] [17] 郭峰, 朱启兵, 黄敏, 等. 基于改进YOLOV4的陶瓷基板瑕疵检测[J]. 光学 精密工程, 2022, 30(13): 1631-1641. doi: 10.37188/OPE.20223013.1631GUOF, ZHUQ B, HUANGM, et al. Defect detection in ceramic substrate based on improved YOLOV4[J]. Opt. Precision Eng., 2022, 30(13): 1631-1641.(in Chinese). doi: 10.37188/OPE.20223013.1631

    [18] [18] 李宝平, 戚恒熠, 王满利, 等. 联合3D建模与改进CycleGAN的故障数据集扩增方法[J]. 光学 精密工程, 2023, 31(16): 2406-2417. doi: 10.37188/ope.20233116.2406LIB P, QIH Y, WANGM L, et al. Equipment fault dataset amplification method combine 3D model with improved CycleGAN[J]. Opt. Precision Eng., 2023, 31(16): 2406-2417.(in Chinese). doi: 10.37188/ope.20233116.2406

    [19] CHEN W, ZHAO J, ZHAO W L et al. Shape-aware monocular 3D object detection[J]. IEEE Transactions on Intelligent Transportation Systems, 24, 6416-6424(2023).

    [20] XIA G S, BAI X, DING J et al. DOTA: a large-scale dataset for object detection in aerial images[C], 3974-3983(2018).

    [21] CHEN H, SHI Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 12, 1662(2020).

    [22] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [23] LIU W, ANGUELOV D, ERHAN D et al. SSD Single Shot MultiBox Detector[M]. Computer Vision-ECCV 2016, 21-37(2016).

    [24] CARION N, MASSA F, SYNNAEVE G et al. End-to-End object detection with transformers[M]. Computer Vision-ECCV 2020, 213-229(2020).

    [25] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C](2018).

    Tools

    Get Citation

    Copy Citation Text

    Linyi WANG, Jing BAI, Yanmei LI, Wenjing LI. Dense control valve parts dataset for industrial object detection[J]. Optics and Precision Engineering, 2024, 32(8): 1241

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 22, 2023

    Accepted: --

    Published Online: May. 29, 2024

    The Author Email: Jing BAI (baijing_nun@163. com)

    DOI:10.37188/OPE.20243208.1241

    Topics