Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1626(2022)

Photorefractive Effect of Lithium Niobate Crystals

ZHENG Dahuai*, ZHANG Yuqi, WANG Shuolin, LIU Hongde, LIU Shiguo, KONG Yongfa, BO Fang, and XU Jingjun
Author Affiliations
  • [in Chinese]
  • show less
    References(79)

    [1] [1] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452.

    [5] [5] ASHKIN A, BOYD G D, DZIEDZIC J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74.

    [6] [6] CHEN F S, LAMACCHIA J T, FRASER D B. Holographic storage in lithium niobate[J]. Applied Physics Letters, 1968, 13(7): 223-225.

    [7] [7] CHEN F S. Optically induced change of refractive indices in LiNbO3 and LiTaO3[J]. Journal of Applied Physics, 1969, 40(8): 3389-3396.

    [8] [8] ZHONG G, JIAN J, WU Z. Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO[J]. Proceedings of the 11th International Quantum Electronics Conference, 1980, 70(6): 631.

    [9] [9] VOLK T R, PRYALKIN V I, RUBININA N M. Optical-damage-resistant LiNbO3∶Zn crystal[J]. Optics Letters, 1990, 15(18): 996-998.

    [10] [10] KONG Y F, WEN J K, WANG H F. New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3∶In[J]. Applied Physics Letters, 1995, 66(3): 280-281.

    [11] [11] YAMAMOTO J K, KITAMURA K, IYI N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3[J]. Applied Physics Letters, 1992, 61(18): 2156-2158.

    [12] [12] KOKANYAN E P, RAZZARI L, CRISTIANI I, et al. Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals[J]. Applied Physics Letters, 2004, 84(11): 1880-1882.

    [13] [13] KONG Y F, LIU S G, ZHAO Y J, et al. Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate[J]. Applied Physics Letters, 2007, 91(8): 081908.

    [15] [15] PHILLIPS W, AMODEI J J, STAEBLER D L. Optical and holographic storage properties of transition metal doped lithium niobate[J]. RCA Review, 1972, 33: 94-109.

    [16] [16] BUSE K, ADIBI A, PSALTIS D. Non-volatile holographic storage in doubly doped lithium niobate crystals[J]. Nature, 1998, 393(6686): 665-668.

    [17] [17] ZHENG D H, WANG W W, WANG S L, et al. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate[J]. Applied Physics Letters, 2019, 114(24): 241903.

    [18] [18] KIP D. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications[J]. Applied Physics B, 1998, 67(2): 131-150.

    [19] [19] CHEN F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications[J]. Laser & Photonics Reviews, 2012, 6(5): 622-640.

    [20] [20] BAZZAN M, SADA C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2015, 2(4): 040603.

    [21] [21] TAYA M, BASHAW M C, FEJER M M, et al. Observation of dark photovoltaic spatial solitons[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1995, 52(4): 3095-3100.

    [22] [22] CHEN F, STEPIC' M, RTER C, et al. Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays[J]. Optics Express, 2005, 13(11): 4314-4324.

    [23] [23] JIANG H W, LUO R, LIANG H X, et al. Fast response of photorefraction in lithium niobate microresonators[J]. Optics Letters, 2017, 42(17): 3267-3270.

    [24] [24] LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 2019, 6(12): 1455.

    [25] [25] XU Y T, SAYEM A A, ZOU C L, et al. Photorefraction-induced Bragg scattering in cryogenic lithium niobate ring resonators[J]. Optics Letters, 2021, 46(2): 432-435.

    [26] [26] AMODEI J J, PHILLIPS W, STAEBLER D L. Improved electrooptic materials and fixing techniques for holographic recording[J]. Applied Optics, 1972, 11(2): 390-396.

    [27] [27] KUKHTAREV N V, MARKOV V B, ODULOV S G, et al. Holographic storage in electrooptic crystals. i. steady state[J]. Ferroelectrics, 1978, 22(1): 949-960.

    [29] [29] VALLEY G C. Simultaneous electron/hole transport in photorefractive materials[J]. Journal of Applied Physics, 1986, 59(10): 3363-3366.

    [30] [30] BROST G A, MOTES R A, ROTGE J R. Intensity-dependent absorption and photorefractive effects in barium titanate[J]. Josa B, 1988, 5(9): 1879-1885.

    [31] [31] BUSE K, KRTZIG E. Three-valence charge-transport model for explanation of the photorefractive effect[J]. Applied Physics B, 1995, 61(1): 27-32.

    [32] [32] CORNER L, DAMZEN M J. An analysis of the three-valence model of photorefraction[J]. Applied Physics B, 1999, 68(5): 819-826.

    [33] [33] ADIBI A, BUSE K, PSALTIS D. Two-center holographic recording[J]. Josa B, 2001, 18(5): 584-601.

    [34] [34] STAEBLER D L, AMODEI J J. Coupled-wave analysis of holographic storage in LiNbO3[J]. Journal of Applied Physics, 1972, 43(3): 1042-1049.

    [35] [35] JUNGEN R, ANGELOW G, LAERI F, et al. Efficient ultraviolet photorefraction in LiNbO3[J]. Applied Physics A, 1992, 55(1): 101-103.

    [36] [36] KONG Y, LIU S, XU J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5(10): 1954-1971.

    [37] [37] LIU F C, KONG Y F, LI W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals[J]. Optics Letters, 2010, 35(1): 10-12.

    [38] [38] XIN F F, ZHANG G Q, GE X Y, et al. Ultraviolet band edge photorefractivity in LiNbO3∶Sn crystals[J]. Optics Letters, 2011, 36(16): 3163-3165.

    [39] [39] XIN F F, ZHANG G Q, BO F, et al. Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals[J]. Journal of Applied Physics, 2010, 107(3): 033113.

    [40] [40] LIU H D, XIE X, KONG Y F, et al. Photorefractive properties of near-stoichiometric lithium niobate crystals doped with iron[J]. Optical Materials, 2006, 28(3): 212-215.

    [41] [41] KSTERS M, STURMAN B, WERHEIT P, et al. Optical cleaning of congruent lithium niobate crystals[J]. Nature Photonics, 2009, 3(9): 510-513.

    [42] [42] MCMILLEN D, HUDSON T, WAGNER J, et al. Holographic recording in specially doped lithium niobate crystals[J]. Optics Express, 1998, 2(12): 491-502.

    [43] [43] DONG Y F, LIU S G, KONG Y F, et al. Fast photorefractive response of vanadium-doped lithium niobate in the visible region[J]. Optics Letters, 2012, 37(11): 1841-1843.

    [44] [44] TIAN T, KONG Y F, LIU S G, et al. Photorefraction of molybdenum-doped lithium niobate crystals[J]. Optics Letters, 2012, 37(13): 2679-2681.

    [45] [45] TIAN T, KONG Y F, LIU S G, et al. Fast UV-Vis photorefractive response of Zr and Mg codoped LiNbO3∶Mo[J]. Optics Express, 2013, 21(9): 10460-10466.

    [46] [46] ZHANG G Y, XU J J, LIU S M, et al. Study of resistance against photorefractive light-induced scattering in LiNbO3∶Fe, Mg crystals[C]//SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 2529, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, San Diego, CA, USA. 1995, 2529: 14-17.

    [47] [47] ZHANG G Q, TOMITA Y, ZHANG X Z, et al. Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3∶In, Fe[J]. Applied Physics Letters, 2002, 81(8): 1393-1395.

    [48] [48] LIU B, LI C L, BI J C, et al. Photorefractive features of non-stoichiometry codoped Hf∶Fe∶LiNbO3 single crystals[J]. Crystal Research and Technology, 2008, 43(3): 260-265.

    [49] [49] KONG Y F, WU S Q, LIU S G, et al. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals[J]. Applied Physics Letters, 2008, 92(25): 251107.

    [50] [50] KONG Y F, LIU F C, TIAN T, et al. Fast responsive nonvolatile holographic storage in LiNbO3 triply doped with Zr, Fe, and Mn[J]. Optics Letters, 2009, 34(24): 3896-3898.

    [51] [51] ZHOU Z F, WANG B, LIN S P, et al. Defect structure and nonvolatile hologram storage properties in Hf∶Fe∶Mn∶LiNbO3 crystals[J]. Optik, 2011, 122(13): 1179-1182.

    [52] [52] LIU Y W, LIU L R, XU L Y, et al. Experimental study of non-volatile holographic storage in doubly- and triply-doped lithium niobate crystals[J]. Optics Communications, 2000, 181(1/2/3): 47-52.

    [53] [53] LIU F C, KONG Y F, GE X Y, et al. Improved sensitivity of nonvolatile holographic storage in triply doped LiNbO3∶Zr, Cu, Ce[J]. Optics Express, 2010, 18(6): 6333-6339.

    [54] [54] XU Z P, XU C, LENG X S, et al. Growth and nonvolatile holographic storage properties of Hf∶Ce∶Cu∶LiNbO3 crystals[J]. Journal of Crystal Growth, 2011, 318(1): 661-664.

    [55] [55] CHIANG C H, CHEN J C, LEE Y C, et al. Photorefractive properties of Ru doped lithium niobate crystal[J]. Optical Materials, 2009, 31(6): 812-816.

    [56] [56] ZHENG D H, KONG Y F, LIU S G, et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals[J]. Scientific Reports, 2016, 6: 20308.

    [57] [57] TAY S, BLANCHE P A, VOORAKARANAM R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179): 694-698.

    [58] [58] BLANCHE P A, BABLUMIAN A, VOORAKARANAM R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer[J]. Nature, 2010, 468(7320): 80-83.

    [59] [59] YU H, LEE K, PARK J, et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields[J]. Nature Photonics, 2017, 11(3): 186-192.

    [60] [60] ZHANG W L, CHENG W D, ZHANG H, et al. A strong second-harmonic generation material Cd4BiO(BO3)3 originating from 3-chromophore asymmetric structures[J]. Journal of the American Chemical Society, 2010, 132(5): 1508-1509.

    [61] [61] XUE D, BETZLER K, HESSE H, et al. Origin of the large nonlinear optical coefficients in bismuth borate BiB3O6[J]. Physica Status Solidi (a), 1999, 176(2): R1-R2.

    [62] [62] ZHENG D H, KONG Y F, LIU S G, et al. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals[J]. AIP Advances, 2015, 5(1): 017132.

    [63] [63] LI L L, LI Y L, ZHAO X. Hybrid density functional theory insight into the stability and microscopic properties of Bi-doped LiNbO3∶lone electron pair effect[J]. Physical Review B, 2017, 96(11): 115118.

    [64] [64] WANG S L, SHAN Y D, WANG W, et al. Lone-pair electron effect induced a rapid photorefractive response in site-controlled LiNbO3∶Bi,M (M=Zn, In, Zr) crystals[J]. Applied Physics Letters, 2021, 118(19): 191902.

    [65] [65] WANG S L, SHAN Y D, ZHENG D H, et al. The real-time dynamic holographic display of LN∶Bi, Mg crystals and defect-related electron mobility[J]. Opto-Electronic Advances, 2020: 210135.

    [66] [66] CHEN F, WANG X L, WANG K M. Development of ion-implanted optical waveguides in optical materials: a review[J]. Optical Materials, 2007, 29(11): 1523-1542.

    [67] [67] ROBERTSON E E, EASON R W, YOKOO Y, et al. Photorefractive damage removal in annealed-proton-exchanged LiNbO3 channel waveguides[J]. Applied Physics Letters, 1997, 70(16): 2094-2096.

    [68] [68] TAN Y, CHEN F, KIP D. Photorefractive properties of optical waveguides in Fe∶LiNbO3 crystals produced by O3+ ion implantation[J]. Applied Physics B, 2009, 94(3): 467-471.

    [69] [69] TAN Y, CHEN F, WANG X L, et al. Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures[J]. Journal of Physics D: Applied Physics, 2008, 41(10): 102001.

    [70] [70] TAN Y, CHEN F, STEPIC' M, et al. Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination[J]. Optics Express, 2008, 16(14): 10465-10470.

    [71] [71] ZHANG H X, KAM C H, ZHOU Y, et al. Optical amplification by two-wave mixing in lithium niobate waveguides[C]//SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 3801, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, Denver, CO, USA. 1999, 3801: 208-214.

    [72] [72] BRADY D J, PSALTIS D. Holographic interconnections in photorefractive waveguides[J]. Applied Optics, 1991, 30(17): 2324-2333.

    [73] [73] CHEN Z G, SEGEV M, WILSON D W, et al. Self-trapping of an optical vortex by use of the bulk photovoltaic effect[J]. Physical Review Letters, 1997, 78(15): 2948-2951.

    [74] [74] KRUGLOV V G, SHANDAROV V M, TAN Y, et al. Formation of dark spatial solitons in planar ion-implanted lithium niobate waveguides[J]. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72(12): 1620-1622.

    [75] [75] TAN Y, CHEN F, BELICˇEV P P, et al. Gap solitons in defocusing lithium niobate binary waveguide arrays fabricated by proton implantation and selective light illumination[J]. Applied Physics B, 2009, 95(3): 531-535.

    [76] [76] SMIRNOV E, RTER C E, STEPIC' M, et al. Dark and bright blocker soliton interaction in defocusing waveguide arrays[J]. Optics Express, 2006, 14(23): 11248-11255.

    [77] [77] SOHLER W, HU H, RICKEN R, et al. Integrated optical devices in lithium niobate[J]. Optics and Photonics News, 2008, 19(1): 24-31.

    [78] [78] BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 2018, 12(4): 1700256.

    [79] [79] ZHANG J H, FANG Z W, LIN J T, et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials, 2019, 9(9): 1218.

    [80] [80] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104.

    [81] [81] YANG Z Q, WEN M X, WAN L, et al. Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate-chalcogenide hybrid platform[J]. Optics Letters, 2022, 47(15): 3808-3811.

    [82] [82] HE Y, YANG Q F, LING J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 2019, 6(9): 1138.

    [83] [83] XU Y T, SHEN M H, LU J J, et al. Mitigating photorefractive effect in thin-film lithium niobate microring resonators[J]. Optics Express, 2021, 29(4): 5497-5504.

    CLP Journals

    [1] SHI Lihong, SHEN Xunan, YAN Wenbo. Study on the Photorefractive Parameters of Lithium Niobate Crystals Doped with Fe and Hf[J]. Journal of Synthetic Crystals, 2023, 52(3): 436

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Dahuai, ZHANG Yuqi, WANG Shuolin, LIU Hongde, LIU Shiguo, KONG Yongfa, BO Fang, XU Jingjun. Photorefractive Effect of Lithium Niobate Crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1626

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 16, 2022

    Accepted: --

    Published Online: Nov. 18, 2022

    The Author Email: ZHENG Dahuai (dhzheng@nankai.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics