International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45003(2025)
Additive manufacturing of ultrastrong and ductile nickel matrix composites via hetero-deformation induced strengthening
[1] [1] Akbarpour M R, Gazani F, Mirabad H M, Khezri I, Moeini A, Sohrabi N and Kim H S. 2023. Recent advances in processing, and mechanical, thermal and electrical properties of Cu-SiC metal matrix composites prepared by powder metallurgy.Prog. Mater. Sci.140, 101191.
[2] [2] Gu D D, Shi X Y, Poprawe R, Bourell D L, Setchi R and Zhu J H. 2021. Material-structure-performance integrated laser-metal additive manufacturing.Science372, eabg1487.
[3] [3] Zhang T L, Huang Z H, Yang T, Kong H J, Luan J H, Wang A D, Wang D, Kuo W, Wang Y Z and Liu C-T. 2021.In situdesign of advanced titanium alloy with concentration modulations by additive manufacturing.Science374, 478–482.
[4] [4] Lee T, Jeong W, Chung S and Ryu H J. 2023. Effects of TiC on the microstructure refinement and mechanical property enhancement of additive manufactured Inconel 625/TiC metal matrix composites fabricated with novel core-shell composite powder.J. Mater. Sci. Technol.164, 13–26.
[5] [5] Wang P, Zhang B C, Tan C C, Raghavan S, Lim Y-F, Sun C-N, Wei J and Chi D Z. 2016. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting.Mater. Des.112, 290–299.
[6] [6] Li X F, Yi D H, Liu B, Zhang J F, Yang X H, Wang C W, Feng Y H, Bai P K, Liu Y and Qian M. 2020. Graphenestrengthened Inconel 625 alloy fabricated by selective laser melting.Mater. Sci. Eng.A798, 140099.
[7] [7] Kumar D, Seetharam R and Ponappa K. 2024. A review on microstructures, mechanical properties and processing of high entropy alloys reinforced composite materials.J. Alloys Compd.972, 172732.
[8] [8] Zhu Y T and Wu X L. 2023. Heterostructured materials.Prog. Mater. Sci.131, 101019.
[9] [9] Jiang H T, Xing H, Xu Z H, Feng J, Zhang J and Sun B D. 2024. Achieving superior strength-ductility balance in novel heterogeneous lamella structures of Al–Zn–Mg–Cu alloys.J. Mater. Sci. Technol.184, 122–135.
[10] [10] Xiao Y M, Song C H, Liu Z B, Liu L Q, Zhou H X, Wang D and Yang Y Q. 2024.In-situadditive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N2.Int. J. Extrem. Manuf.6, 035001.
[11] [11] Zhang B C, Bi G J, Chew Y, Wang P, Ma G Y, Liu Y F and Moon S K. 2019. Comparison of carbon-based reinforcement on laser aided additive manufacturing Inconel 625 composites.Appl. Surf. Sci.490, 522–534.
[12] [12] Hong C et al. 2015. Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts: tailored microstructures and enhanced performance.Mater. Sci. Eng.A635, 118–128.
[13] [13] Wang M, Ma Z L, Xu Z Q and Cheng X W. 2021. Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications.Scr. Mater.191, 131–136.
[14] [14] Wang M, Ma Z L, Xu Z Q and Cheng X W. 2021. Effects of vanadium concentration on mechanical properties of VxNbMoTa refractory high-entropy alloys.Mater. Sci. Eng.A808, 140848.
[15] [15] Sui S, Chew Y, Weng F, Tan C L, Du Z L and Bi G J. 2022. Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti–6Al–4V.Int. J. Extrem. Manuf.4, 035102.
[16] [16] Hu Y L, Lin X, Li Y L, Zhang S Y, Zhang Q, Chen W M, Li W and Huang W D. 2021. Influence of heat treatments on the microstructure and mechanical properties of Inconel 625 fabricated by directed energy deposition.Mater. Sci. Eng.A817, 141309.
[17] [17] Mohammadpour P, Yuan H and Phillion A B. 2022. Microstructure evolution of Inconel 625 alloy during single-track Laser Powder Bed Fusion.Addit. Manuf.55, 102824.
[18] [18] Hu Y L, Li Y L, Zhang S Y, Lin X, Wang Z H and Huang W D. 2020. Effect of solution temperature on static recrystallization and ductility of Inconel 625 superalloy fabricated by directed energy deposition.Mater. Sci. Eng.A772, 138711.
[19] [19] Nguejio J, Szmytka F, Hallais S, Tanguy A, Nardone S and Godino Martinez M. 2019. Comparison of microstructure features and mechanical properties for additive manufactured and wrought nickel alloys 625.Mater. Sci. Eng.A764, 138214.
[20] [20] Marchese G et al. 2018. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion.Mater. Sci. Eng.A729, 64–75.
[21] [21] Poulin J-R, Brailovski V and Terriault P. 2018. Long fatigue crack propagation behavior of Inconel 625 processed by laser powder bed fusion: influence of build orientation and postprocessing conditions.Int. J. Fatigue116, 634–647.
[22] [22] Hack H, Link R, Knudsen E, Baker B and Olig S. 2017. Mechanical properties of additive manufactured nickel alloy 625.Addit. Manuf.14, 105–115.
[23] [23] Poulin J-R, Kreitcberg A, Terriault P and Brailovski V. 2020. Fatigue strength prediction of laser powder bed fusion processed Inconel 625 specimens with intentionally-seeded porosity: feasibility study.Int. J. Fatigue132, 105394.
[24] [24] Gao Y, Zhang D Y, Cao M, Chen R P, Feng Z, Poprawe R, Schleifenbaum J H and Ziegler S. 2019. Effect of phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process.Mater. Sci. Eng.A767, 138327.
[25] [25] Popovich V A, Borisov E V, Popovich A A, Sufiiarov V S, Masaylo D V and Alzina L. 2017. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting.Mater. Des.131, 12–22.
[26] [26] Zhong C L, Gasser A, Kittel J, Wissenbach K and Poprawe R. 2016. Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition.Mater. Des.98, 128–134.
[27] [27] Ni M, Chen C, Wang X J, Wang P W, Li R D, Zhang X Y and Zhou K C. 2017. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing.Mater. Sci. Eng.A701, 344–351.
[28] [28] Yi J H, Kang J W, Wang T J, Wang X, Hu Y Y, Feng T, Feng Y L and Wu P Y. 2019. Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting.J. Alloys Compd.786, 481–488.
[29] [29] Zhang H M, Gu D D, Ma C L, Guo M, Yang J K and Wang R. 2019. Effect of post heat treatment on microstructure and mechanical properties of Ni-based composites by selective laser melting.Mater. Sci. Eng.A765, 138294.
[30] [30] Du D F, Dong A P, Shu D, Zhu G L, Sun B D, Li X and Lavernia E. 2019. Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting.Mater. Sci. Eng.A760, 469–480.
[31] [31] Zhang Y C, Yang L, Lu W Z, Wei D, Meng T and Gao S N. 2020. Microstructure and elevated temperature mechanical properties of IN718 alloy fabricated by laser metal deposition.Mater. Sci. Eng.A771, 138580.
[32] [32] Deng D Y, Peng R L, Brodin H and Moverare J. 2018. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: sample orientation dependence and effects of post heat treatments.Mater. Sci. Eng.A713, 294–306.
[33] [33] Xiao H, Li S M, Han X, Mazumder J and Song L J. 2017. Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing.Mater. Des.122, 330– 339.
[34] [34] Georgilas K, Khan R H U and Kartal M E. 2020. The influence of pulsed laser powder bed fusion process parameters on Inconel 718 material properties.Mater. Sci. Eng.A769, 138527.
[35] [35] Yang H H, Meng L, Luo S C and Wang Z M. 2020. Microstructural evolution and mechanical performances of selective laser melting Inconel 718 from low to high laser power.J. Alloys Compd.828, 154473.
[36] [36] Li Z, Chen J, Sui S, Zhong C L, Lu X F and Lin X. 2020. The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition.Addit. Manuf.31, 100941.
[37] [37] Huang L, Cao Y, Li G H and Wang Y F. 2020. Microstructure characteristics and mechanical behaviour of a selective laser melted Inconel 718 alloy.J. Mater. Res. Technol.9, 2440–2454.
[38] [38] Zhang B C, Bi G J, Wang P, Bai J M, Chew Y and Nai M S. 2016. Microstructure and mechanical properties of Inconel 625/nano-TiB2 composite fabricated by LAAM.Mater. Des.111, 70–79.
[39] [39] Lerda S, Marchese G, Bassini E, Lombardi M, Ugues D, Fino P and Biamino S. 2023. Understanding the microstructure and mechanical performance of heat-treated Inconel 625/TiC composite produced by laser powder bed fusion.Mater. Sci. Eng.A883, 145508.
[40] [40] Melzer D, Gil J, Rzepa S, Amaral R, Podan P, Dugan J and Reis A. 2023. Ambient and high temperature tensile behaviour of DLD-manufactured inconel 625/42C steel joint.Mater. Sci. Eng.A885, 145603.
[41] [41] Wang C M, Xiao Y K, Mi G Y, Zhang M Y, Hua Z J and Hu Y Y. 2024. Ti3SiC2 reinforced Inconel 625 composites prepared via laser directed energy deposition: new insights into microstructure evolution and mechanical properties.J. Alloys Compd.970, 172396.
[42] [42] Poudel A, Gradl P R, Shao S and Shamsaei N. 2024. Tensile deformation behavior of laser powder direct energy deposited Inconel 625: cryogenic to elevated temperatures.Mater. Sci. Eng.A889, 145826.
[43] [43] Montero-Sistiaga M L, Liu Z Z, Bautmans L, Nardone S, Ji G, Kruth J P, Van Humbeeck J and Vanmeensel K. 2020. Effect of temperature on the microstructure and tensile properties of micro-crack free hastelloy X produced by selective laser melting.Addit. Manuf.31, 100995.
[44] [44] Trosch T, Strner J, Vlkl R and Glatzel U. 2016. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting.Mater. Lett.164, 428–431.
[45] [45] Zhao J-R, Hung F-Y and Lui T-S. 2020. Microstructure and tensile fracture behavior of three-stage heat treated inconel 718 alloy produced via laser powder bed fusion process.J. Mater. Res. Technol.9, 3357–3367.
[46] [46] Kim Y, Bae J, Lee J, Kang H, Kim J G and Kim S. 2024. Effect of stabilization annealing on fatigue crack propagation behavior of inconel 706 alloy at 25 and 650 °C.J. Mater. Res. Technol.30, 7084–7094.
[47] [47] Zou T F et al. 2023. Effect of temperature on tensile behavior, fracture morphology, and deformation mechanisms of Nickel-based additive manufacturing 939 superalloy.J. Alloys Compd.959, 170559.
[48] [48] Teng Q, Li S, Wei Q S and Shi Y S. 2021. Investigation on the influence of heat treatment on Inconel 718 fabricated by selective laser melting: microstructure and high temperature tensile property.J. Manuf. Process.61, 35–45.
[49] [49] Zhang X Y, Chen Y, Cao L Y, Sun Y L, Li J, Cheng X and Tian G F. 2023. Microstructures and tensile properties of a grain-size gradient nickel-based superalloy.J. Alloys Compd.960, 170344.
[50] [50] Texier D, Milanese J, Jullien M, Gene J, Passieux J-C, Bardel D, Andrieu E, Legros M and Stinville J-C. 2024. Strain localization in the Alloy 718 Ni-based superalloy: from room temperature to 650 °C.Acta Mater.268, 119759.
[51] [51] Zhang T, Li H G, Gong H, Wu Y X, Ahmad A S and Chen X. 2021. Effect of rolling force on tensile properties of additively manufactured Inconel 718 at ambient and elevated temperatures.J. Alloys Compd.884, 161050.
[52] [52] Li K-S, Lu R-S, Gong X-F, Pei Y-B, Zhang X, Tan J-P, Zhang X-C, Tu S-T and Wang R-Z. 2024. Investigation of microstructural evolution and mechanical properties for inservice nickel-based superalloy.Mater. Sci. Eng.A899, 146465.
[53] [53] Feng J W, Gui W Y, Liu Q, Bi W Y, Ren X C, Liang Y F, Lin J P and Luan B L. 2023. Ti–48Al–2Cr–2Nb alloys prepared by electron beam selective melting additive manufacturing: microstructural and tensile properties.J. Mater. Res. Technol.26, 9357–9369.
[54] [54] Zhao H Z, Lu B, Tong M and Yang R. 2017. Tensile behavior of Ti-22Al-24Nb-0.5Mo in the range 25–650 °C.Mater. Sci. Eng.A679, 455–464.
[55] [55] Xia Z Z, Cui Y Y, Shen Y Y, Arroussi M, Liu R H, Yang L, Jia Q and Yang R. 2022. Tensile properties of Ti–48Al–2Cr–2Nb alloy having similarly oriented lamellae with fine lamellar spacing facilitated by suction casting.Mater. Sci. Eng.A830, 142303.
[56] [56] Cao R X, Liu R C, Yang C, Zhu Z H, Wang Y R, Cui Y Y and Yang R. 2023. Tensile behavior of cast -TiAl alloys with varied boride morphologies.Mater. Sci. Eng.A888, 145807.
[57] [57] Han J C, Zhang X L, Cao S Z, Zhang W, Wang Y J and Zhang S Z. 2024. Microstructure evolution and mechanical properties of /-TiAl alloy during high-rate nearisothermal multidirectional forging.Mater. Sci. Eng.A903, 146648.
[58] [58] Su Y, Fan H Y, You F H, Kong F T, Wang X P and Chen Y Y. 2020. Improved tensile properties of a novel near- titanium alloy via tailoring microstructure by hot-rolling.Mater. Sci. Eng.A790, 139588.
[59] [59] Lian Q H, Zhang C J, Feng H, Zhang S Z, Peng F and Cao P. 2023. Enhanced mechanical properties of a near- titanium alloy by tailoring the silicide precipitation behavior through severe plastic deformation.Mater. Sci. Eng.A880, 145356.
[60] [60] Sui S, Tan H, Chen J, Zhong C L, Li Z, Fan W, Gasser A and Huang W D. 2019. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing.Acta Mater.164, 413–427.
[61] [61] Fan W, Peng Y J, Qi Y, Tan H, Feng Z, Wang Y X, Zhang F Y and Lin X. 2023. Partially melted powder in laser based directed energy deposition: formation mechanism and its influence on microstructure.Int. J. Mach. Tools Manuf.192, 104072.
[62] [62] Bermingham M J, StJohn D H, Krynen J, Tedman-Jones S and Dargusch M S. 2019. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing.Acta Mater.168, 261–274.
[63] [63] Jie G, Qingchao M, Yan S, Kangning W, Qiang S and Canming W. 2023. Effect of Nb content on microstructure and corrosion resistance of Inconel 625 coating formed by laser cladding.Surf. Coat. Technol.458, 129311.
[64] [64] Wang H, Wu M P, Miao X J, Jin X, Cui C H, Ma C L and Wang Q L. 2023. Effect of Nb on the microstructure and wear resistance of In625/(Nbx+SiC0.5) composite coatings by laser cladding.Ceram. Int.49, 38420–38431.
[65] [65] Joseph C, Persson C and Hrnqvist Colliander M. 2017. Influence of heat treatment on the microstructure and tensile properties of Ni-base superalloy Haynes 282.Mater. Sci. Eng.A679, 520–530.
[66] [66] Hu Y L, Lin X, Zhang S Y, Jiang Y M, Lu X F, Yang H O and Huang W D. 2018. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming.J. Alloys Compd.767, 330–344.
[67] [67] Cui L Q, Jiang S, Xu J H, Peng R L, Mousavian R T and Moverare J. 2021. Revealing relationships between microstructure and hardening nature of additively manufactured 316L stainless steel.Mater. Des.198, 109385.
[68] [68] Zhi H H, Zhang C, Antonov S, Yu H Y, Guo T and Su Y J. 2020. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel.Acta Mater.195, 371–382.
[69] [69] Murnsky O, Balogh L, Tran M, Hamelin C J, Park J-S and Daymond M R. 2019. On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques.Acta Mater.175, 297–313.
[70] [70] Roth H A, Davis C L and Thomson R C. 1997. Modeling solid solution strengthening in nickel alloys.Metall. Mater. Trans.A28, 1329–1335.
[71] [71] Kim H S, Hong S I and Kim S J. 2001. On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles.J. Mater. Process. Technol.112, 109–113.
[72] [72] Kim H S. 2000. On the rule of mixtures for the hardness of particle reinforced composites.Mater. Sci. Eng.A289, 30–33.
[73] [73] Liu G R. 1997. A step-by-step method of rule-of-mixture of fiber- and particle-reinforced composite materials.Compos. Struct.40, 313–322.
[74] [74] Zuo Q, Wang C H, Pei X Y, Lin L G, Li Y and Sun W D. 2023. Analysis and prediction of tensile properties based on rule of mixtures model for multi-scale ramie plain woven fabric reinforced composite.Compos. Struct.311, 116785.
[75] [75] Abdullah K, Wild P M, Jeswiet J J and Ghasempoor A. 2001. Tensile testing for weld deformation properties in similar gage tailor welded blanks using the rule of mixtures.J. Mater. Process. Technol.112, 91–97.
[76] [76] Liu L et al. 2023. Loss-free tensile ductility of dual-structure titanium composites via an interdiffusion and self-organization strategy.Proc. Natl Acad. Sci. USA120, e2302234120.
[77] [77] Wu X L, Yang M X, Yuan F P, Wu G L, Wei Y J, Huang X X and Zhu Y T. 2015. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility.Proc. Natl Acad. Sci. USA112, 14501–14505.
Get Citation
Copy Citation Text
Sui Shang, Qi Jiawei, Ma Dong, Xu Chunjie, Qi Yuanshen, Xu Mengting, Liu Yuhang, Yu Wanjian, Guo Can, Wu Xiangquan, Zhang Zhongming. Additive manufacturing of ultrastrong and ductile nickel matrix composites via hetero-deformation induced strengthening[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45003
Category:
Received: Dec. 12, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: