Opto-Electronic Engineering, Volume. 48, Issue 2, 200160(2021)
A B-spline based fast wavefront reconstruction algorithm
[1] [1] Furukawa Y, Takaie Y, Maeda Y, et al. Development of one-shot aspheric measurement system with a Shack-Hartmann sensor[J]. Appl Opt, 2016, 55(29): 8138–8144.
[2] [2] Wu Y, He J C, Zhou X T, et al. A limitation of Hartmann-Shack system in measuring wavefront aberrations for patients received laser refractive surgery[J]. PLoS One, 2015, 10(2): e0117256.
[5] [5] Wei L, Shi G H, Lu J, et al. Centroid offset estimation in the Fourier domain for a highly sensitive Shack–Hartmann wavefront sensor[J]. J Opt, 2013, 15(5): 055702.
[6] [6] Fried D L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements[J]. J Opt Soc Am, 1977, 67(3): 370–375.
[7] [7] Southwell W H. Wave-front estimation from wave-front slope measurements[J]. J Opt Soc Am, 1980, 70(8): 998–1006.
[8] [8] Dai F Z, Tang F, Wang X Z, et al. Modal wavefront re-construction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms[J]. Appl Opt, 2012, 51(21): 5028–5037.
[9] [9] Lee H. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils[J]. Opt Lett, 2010, 35(13): 2173–2175.
[10] [10] Nam J, Thibos L N, Iskander D R. Zernike radial slope polynomials for wavefront reconstruction and refraction[J]. J Opt Soc Am A, 2009, 26(4): 1035–1048.
[12] [12] Darudi A, Bakhshi H, Asgari R. Image restoration using aberration taken by a Hartmann wavefront sensor on extended object, towards real-time deconvolution[J]. Proc SPIE, 2015, 9530: 95300Q.
[13] [13] Seifert L, Tiziani H J, Osten W. Wavefront reconstruction with the adaptive Shack–Hartmann sensor[J]. Opt Commun, 2005, 245(1–6): 255–269.
[14] [14] Ares M, Royo S. Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction[J]. Appl Opt, 2006, 45(27): 6954–6964.
[15] [15] de Visser C C, Verhaegen M. Wavefront reconstruction in adaptive optics systems using nonlinear multivariate splines[J]. J Opt Soc Am A, 2013, 30(1): 82–95.
[16] [16] Huang L, Xue J P, Gao B, et al. Spline based least squares integration for two-dimensional shape or wavefront reconstruction[J]. Opt Lasers Eng, 2017, 91: 221–226.
[17] [17] Pant K K, Burada D R, Bichra M, et al. Weighted spline based integration for reconstruction of freeform wavefront[J]. Appl Opt, 2018, 57(5): 1100–1109.
[18] [18] Knott G D. Interpolating Cubic Splines[M]. Boston: Birkh?user, 2000.
[20] [20] Yang J S, Wei L, Chen H L, et al. Absolute calibration of Hartmann-Shack wavefront sensor by spherical wavefronts[J]. Opt Commun, 2010, 283(6): 910–916.
[21] [21] Xie D X. A new block parallel SOR method and its analysis[J]. SIAM J Sci Comput, 2006, 27(5): 1513–1533.
[22] [22] Chamot S R, Dainty C, Esposito S. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor[J]. Opt Express, 2006, 14(2): 518–526.
[23] [23] Chanteloup J C F, Cohen M. Compact high resolution four wave lateral shearing interferometer[J]. Proc SPIE, 2004, 5252: 282–292.
Get Citation
Copy Citation Text
Chen Hao, Wei Ling, Li Ende, He Yi, Yang Jinsheng, Li Xiqi, Fan Xinlong, Yang Zeping, Zhang Yudong. A B-spline based fast wavefront reconstruction algorithm[J]. Opto-Electronic Engineering, 2021, 48(2): 200160
Category: Article
Received: May. 11, 2020
Accepted: --
Published Online: Sep. 4, 2021
The Author Email: Hao Chen (chenhao114@mails.ucas.ac.cn)