Journal of Synthetic Crystals, Volume. 50, Issue 8, 1583(2021)
Research Progress on Preparation Technology of Practical Bi-Based Superconducting Tape
[1] [1] SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Room-temperature superconductivity in a carbonaceous sulfur hydride[J]. Nature, 2020, 586(7829): 373-377.
[3] [3] SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures[J]. Physical Review Letters, 2019, 122(2): 027001.
[4] [4] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures[J]. Nature, 2019, 569(7757): 528-531.
[5] [5] CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84.
[6] [6] CAO Y, FATEMI V, FANG S A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50.
[7] [7] SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures[J]. Physical Review Letters, 2021, 126(11): 117003.
[8] [8] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system[J]. Nature, 2015, 525(7567): 73-76.
[9] [9] BHAUMIK A, SACHAN R, GUPTA S, et al. Discovery of high-temperature superconductivity (Tc=55 K) in B-doped Q-carbon[J]. ACS Nano, 2017, 11(12): 11915-11922.
[10] [10] EKIMOV E A, SIDOROV V A, BAUER E D, et al. Superconductivity in diamond[J]. Nature, 2004, 428(6982): 542-545.
[11] [11] TAKESUE I, HARUYAMA J, KOBAYASHI N, et al. Superconductivity in entirely end-bonded multiwalled carbon nanotubes[J]. Physical Review Letters, 2006, 96(5): 057001.
[12] [12] KOCIAK M, KASUMOV A Y, GURON S, et al. Superconductivity in ropes of single-walled carbon nanotubes[J]. Physical Review Letters, 2001, 86(11): 2416-2419.
[13] [13] PALSTRA T T M, ZHOU O, IWASA Y, et al. Superconductivity at 40 K in cesium doped C60[J]. Solid State Communications, 1995, 93(4): 327-330.
[14] [14] TANIGAKI K, EBBESEN T W, SAITO S, et al. Superconductivity at 33 K in CsxRbyC60[J]. Nature, 1991, 352(6332): 222-223.
[15] [15] HEBARD A F, ROSSEINSKY M J, HADDON R C, et al. Superconductivity at 18 K in potassium-doped C60[J]. Nature, 1991, 350(6319): 600-601.
[16] [16] SARRAO J L, MORALES L A, THOMPSON J D, et al. Plutonium-based superconductivity with a transition temperature above 18 K[J]. Nature, 2002, 420(6913): 297-299.
[17] [17] WASTIN F, BOULET P, REBIZANT J, et al. Advances in the preparation and characterization of transuranium systems[J]. Journal of Physics: Condensed Matter, 2003, 15(28): S2279-S2285.
[18] [18] PETROVIC C, PAGLIUSO P G, HUNDLEY M F, et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K[J]. Journal of Physics: Condensed Matter, 2001, 13(17): L337-L342.
[19] [19] GEIBEL C, SCHANK C, THIES S, et al. Heavy-fermion superconductivity at Tc=2 K in the antiferromagnet UPd2Al3[J]. Zeitschrift Für Physik B Condensed Matter, 1991, 84(1): 1-2.
[20] [20] STEWART G R, FISK Z, WILLIS J O, et al. Possibility of coexistence of bulk superconductivity and spin fluctuations in UPt3[J]. Physical Review Letters: 1984: 1984, 52(8): 679-682.
[21] [21] OTT H R, RUDIGIER H, FISK Z, et al. UBe13: an unconventional actinide superconductor[J]. Physical Review Letters, 1983, 50(20): 1595-1598.
[22] [22] STEGLICH F, AARTS J, BREDL C D, et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2[J]. Physical Review Letters, 1979, 43(25): 1892-1896.
[23] [23] MATTHIAS B T, GEBALLE T H, COMPTON V B. Superconductivity[J]. Reviews of Modern Physics, 1963, 35(1): 1-22.
[24] [24] BEDNORZ J G, MLLER K A. Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Zeitschrift Für Physik B Condensed Matter, 1986, 64(2): 189-193.
[25] [25] WU M K, ASHBURN J R, TORNG C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908-910.
[26] [26] MAEDA H, TANAKA Y, FUKUTOMI M, et al. A new high-Tc oxide superconductor without a rare earth element[J]. Japanese Journal of Applied Physics, 1988, 27(2): L209-L210.
[27] [27] SUBRAMANIAN M A, TORARDI C C, CALABRESE J C, et al. A new high-temperature superconductor: Bi2Sr3-xCaxCu2O8+y[J]. Science, 1988, 239(4843): 1015-1017.
[28] [28] TAKANO M, TAKADA J, ODA K, et al. High-Tc Phase promoted and stabilized In the Bi, Pb-Sr-Ca-Cu-O system[J]. Japanese Journal of Applied Physics, 1988, 27(Part 2, No. 6): L1041-L1043.
[29] [29] TOGANO K, KUMAKURA H, MAEDA H, et al. Properties of Pb-doped Bi-Sr-Ca-Cu-O superconductors[J]. Applied Physics Letters, 1988, 53(14): 1329-1331.
[30] [30] PARKIN S S P, LEE V Y, ENGLER E M, et al. Bulk superconductivity at 125 K in Tl2Ca2Ba2Cu3Ox[J]. Physics Review Letters, 1988, 60(24): 2539-2542.
[31] [31] SCHILLING A, CANTONI M, GUO J D, et al. Superconductivity above 130 K In the Hg-Ba-Ca-Cu-O system[J]. Nature, 1993, 363(6424): 56-58.
[32] [32] DAI P, CHAKOUMAKOS B C, SUN G F, et al. Synthesis and neutron powder diffraction study of the superconductor HgBa2Ca2Cu3O8+δ by Tl substitution[J]. Physica C: Superconductivity, 1995, 243(3/4): 201-206.
[33] [33] GAO L, XUE Y Y, CHEN F, et al. Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ(m=1, 2, and 3) under quasihydrostatic pressures[J]. Physical Review B, 1994, 50(6): 4260-4263.
[34] [34] RAZZAQUE A, ISLAM A K M A, ISLAM F N, et al. Superconductivity of Li under pressure[J]. Solid State Communications, 2004, 131(11): 671-675.
[35] [35] NAGAMATSU J, NAKAGAWA N, MURANAKA T, et al. Superconductivity at 39 K in magnesium diboride[J]. Nature, 2001, 410(6824): 63-64.
[36] [36] CAVA R J, TAKAGI H, BATLOGG B, et al. Superconductivity at 23 K in yttrium palladium boride carbide[J]. Nature, 1994, 367(6459): 146-148.
[37] [37] CAVA R J, BATLOGG B, KRAJEWSKI J J, et al. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite[J]. Nature, 1988, 332(6167): 814-816.
[38] [38] GE J F, LIU Z L, LIU C H, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3[J]. Nature Materials, 2015, 14(3): 285-289.
[39] [39] WU G, XIE Y L, CHEN H, et al. Superconductivity at 56 K in samarium-doped SrFeAsF[J]. Journal of Physics Condensed Matter, 2009, 21(14): 142203.
[40] [40] REN Z A, CHE G C, DONG X L, et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-δ (Re=rare-earth metal) without fluorine doping[J]. EPL (Europhysics Letters), 2008, 83(1): 17002.
[41] [41] CHEN X H, WU T, WU G, et al. Superconductivity at 43 K in SmFeAsO1-xFx[J]. Nature, 2008, 453(7196): 761-762.
[42] [42] KAMIHARA Y, WATANABE T, HIRANO M, et al. Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc= 26 K[J]. Journal of the American Chemical Society, 2008, 130(11): 3296-3297.
[43] [43] KAMIHARA Y, HIRAMATSU H, HIRANO M, et al. Iron-based layered superconductor: laofep[J]. ChemInform, 2006, 37(45): no.
[44] [44] GAVALER J R. Superconductivity in Nb-Ge films above 22 K[J]. Applied Physics Letters, 1973, 23(8): 480-482.
[46] [46] YU Y J, MA L G, CAI P, et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ[J]. Nature, 2019, 575(7781): 156-163.
[47] [47] HASHIMOTO M, NOWADNICK E A, HE R H, et al. Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi2Sr2CaCu2O8+δ[J]. Nature Materials, 2015, 14(1): 37-42.
[48] [48] TOKURA Y, TAKAGI H, UCHIDA S. A superconducting copper oxide compound with electrons as the charge carriers[J]. Nature, 1989, 337(6205): 345-347.
[56] [56] SATO K I, KOBAYASHI S I, NAKASHIMA T. Present status and future perspective of bismuth-based high-temperature superconducting wires realizing application systems[J]. Japanese Journal of Applied Physics, 2012, 51(1R): 010006.
[57] [57] KOBAYASHI S, KATO T, YAMAZAKI K, et al. Controlled over pressure processing of Bi2223 long length wires[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2534-2537.
[58] [58] KOBAYASHI S, YAMAZAKI K, KATO T, et al. Controlled over-pressure sintering process of Bi2223 wires[J]. Physica C: Superconductivity and Its Applications, 2005, 426/427/428/429/430/431: 1132-1137.
[59] [59] NAITO T, FUJISHIRO H, YAMADA Y. Thermal conductivity and dilatation of Bi-2223/Ag (DI-BSCCO) superconducting wire laminated with various thin alloy tapes[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1-4.
[61] [61] PATNAIK S, FELDMANN D M, POLYANSKII A A, et al. Local measurement of current density by magneto-optical current reconstruction in normally and overpressure processed Bi-2223 tapes[J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2930-2933.
[62] [62] NAKASHIMA T, KOBAYASHI S, KAGIYAMA T, et al. Overview of the recent performance of DI-BSCCO wire[J]. Cryogenics, 2012, 52(12): 713-718.
[63] [63] WANG S L, XIA Z Z, CHEN S S, et al. The technology of fabrication & application of Bi-2223 HTS wires at InnoST[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1581-1584.
[64] [64] XIAO L Y, GU H W. The progresses of superconducting technology for power grid last decade in China[J]. Progress in Superconductivity and Cryogenics, 2015, 17(1): 1-5.
[65] [65] LI X H, ZHANG J Y, HUANG K T, et al. Electromagnetic design of high-temperature superconducting traction transformer for high-speed railway train[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-5.
[66] [66] SATO K I. Recent progress of Bi2223 HTS wires and their applications[J]. Journal of Cryogenics and Superconductivity Society of Japan, 2007, 42(10): 338-345.
[67] [67] GODEKE A, ABRAIMOV D V, ARROYO E, et al. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids[J]. Superconductor Science and Technology, 2017, 30(3): 035011.
[68] [68] YUMURA H, ASHIBE Y, ITOH H, et al. Phase II of the Albany HTS cable project[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1698-1701.
[69] [69] YAMAGUCHI S, HAMABE M, YAMAMOTO I, et al. Research activities of DC superconducting power transmission line in Chubu University[J]. Journal of Physics: Conference Series, 2008, 97: 012290.
[70] [70] YAMAGUCHI S, KAWAHARA T, HAMABE M, et al. Experiment of 200-meter superconducting DC cable system in Chubu University[J]. Physica C: Superconductivity and Its Applications, 2011, 471(21/22): 1300-1303.
Get Citation
Copy Citation Text
ZHENG Beibei, SHAO Ling, CHEN Yingwei. Research Progress on Preparation Technology of Practical Bi-Based Superconducting Tape[J]. Journal of Synthetic Crystals, 2021, 50(8): 1583
Category:
Received: Mar. 26, 2021
Accepted: --
Published Online: Nov. 6, 2021
The Author Email: ZHENG Beibei (laobei007@foxmail.com)
CSTR:32186.14.