Acta Optica Sinica, Volume. 43, Issue 12, 1206001(2023)

Application of Support Vector Machine in Quantitative Analysis of Mixed Gas

Jifang Shan1,2, Kun Liu1,2、*, Junfeng Jiang1,2, Tiegen Liu1,2, and Hui Yin1,2
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • show less
    References(21)

    [1] Fraser M P, Cass G R. Detection of excess ammonia emissions from in-use vehicles and the implications for fine particle control[J]. Environmental Science & Technology, 32, 1053-1057(1998).

    [2] Pal D, Sen R, Pal A. Design of all-fiber thulium laser in CW and QCW mode of operation for medical use[J]. Physica Status Solidi C, 14, 1600127(2017).

    [3] Hardy L A, Wilson C R, Irby P B et al. Rapid thulium fiber laser lithotripsy at pulse rates up to 500 Hz using a stone basket[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 138-141(2014).

    [4] Li Z, Heidt A M, Simakov N et al. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800-2050 nm window[J]. Optics Express, 21, 26450-26455(2013).

    [5] Gibert F, Flamant P H, Cuesta J et al. Vertical 2‑μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere[J]. Journal of Atmospheric and Oceanic Technology, 25, 1477-1497(2008).

    [6] Bremer K, Pal A, Yao S et al. Sensitive detection of CO2 implementing tunable thulium-doped all-fiber laser[J]. Applied Optics, 52, 3957-3963(2013).

    [7] Al-Alawi S M, Abdul-Wahab S A, Bakheit C S. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone[J]. Environmental Modelling & Software, 23, 396-403(2008).

    [8] Kolehmainen M, Martikainen H, Hiltunen T et al. Forecasting air quality parameters using hybrid neural network modelling[J]. Environmental Monitoring and Assessment, 65, 277-286(2000).

    [9] Kukkonen J, Partanen L, Karppinen A et al. Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki[J]. Atmospheric Environment, 37, 4539-4550(2003).

    [10] Duan X L, Wang M Q. Quantitative analysis of multi-component gases in underground by improved PSO-SVM algorithm[J]. Spectroscopy and Spectral Analysis, 39, 2883-2888(2019).

    [11] Zhang J W, Tittel F K, Gong L W et al. Support vector machine modeling using particle swarm optimization approach for the retrieval of atmospheric ammonia concentrations[J]. Environmental Modeling & Assessment, 21, 531-546(2016).

    [12] Qu J, Chen H Y, Liu W Z et al. Application of support vector machine based on adaptive mutation particle swarm optimization in analysis of gas mixture[J]. Chinese Journal of Sensors and Actuators, 28, 1262-1268(2015).

    [13] Zhang Y, Luo X G, He K et al. Colorimetric artificial nose and pattern recognition methods for the concentration analysis of NH3[J]. Water, Air, & Soil Pollution, 223, 2969-2977(2012).

    [14] Soroush E, Shahsavari S, Mesbah M et al. A robust predictive tool for estimating CO2 solubility in potassium based amino acid salt solutions[J]. Chinese Journal of Chemical Engineering, 26, 740-746(2018).

    [15] Sedighi F, Vafakhah M, Javadi M R. Rainfall-runoff modeling using support vector machine in snow-affected watershed[J]. Arabian Journal for Science and Engineering, 41, 4065-4076(2016).

    [16] Alpert N L, Keiser W E, Szymanski H A et al. IR-theory and practice of infrared spectroscopy[J]. Physics Today, 27, 47-49(1974).

    [17] Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 10, 988-999(1999).

    [18] Sheng W J, Hu Z B, Yang N et al. Demodulation of temperature stabilized fiber Bragg grating sensor based on optimized least square support vector machine[J]. Laser&Optoelectronics Progress, 59, 0305002(2022).

    [19] Zhang L X, Zhang N N, Zhang X. Discriminant analysis of apple origin based on machine learning algorithm[J]. Laser&Optoelectronics Progress, 59, 0430001(2022).

    [20] Zhu X X, Han Z H. Research on LS-SVM wind speed prediction method based on PSO[J]. Proceedings of the CSEE, 36, 6337-6342, 6598(2016).

    [21] Wang Q, Zeng W D, Xia Z P et al. Recognition of food-borne pathogenic bacteria by Raman spectroscopy based on random forest algorithm[J]. Chinese Journal of Lasers, 48, 0311002(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jifang Shan, Kun Liu, Junfeng Jiang, Tiegen Liu, Hui Yin. Application of Support Vector Machine in Quantitative Analysis of Mixed Gas[J]. Acta Optica Sinica, 2023, 43(12): 1206001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Sep. 6, 2022

    Accepted: Oct. 27, 2022

    Published Online: Jun. 20, 2023

    The Author Email: Liu Kun (beiyangkl@tju.edu.cn)

    DOI:10.3788/AOS221681

    Topics