Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0210009(2023)

Super-Resolution Computed Tomography Reconstruction of Residual Attention Aggregation Dual Regression Network

Jinhe Fan1,2, Jing Wu1,2、*, and Maolin He1,2
Author Affiliations
  • 1College of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • 2Sichuan Key Laboratory of Special Environmental Robotics, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • show less
    Figures & Tables(16)
    Reconstructed network structure diagram of RAADRNet for SRX4
    Diagram of channel learning attention (CLA)
    Diagram of spatial learning attention (SLA)
    Diagram of single scale down-sampling extraction block (SDEB)
    Diagram of multi-feature down-sampling extraction block (MFDEB)
    Cascade residual channel attention network (RCAB) block
    Diagram of residual attention aggregation block (RAAB)
    Effect comparision of SRX4 reconstruction images in Set1
    Effect comparision of SRX8 reconstruction images in Set2
    Effect comparision of SRX8 reconstruction images in Set3
    • Table 1. Parameter configuration

      View table

      Table 1. Parameter configuration

      AlgorithmSRX2SRX4SRX8SRX16
      RAADRNet16/3016/308/308/15
    • Table 2. Ablation test results of attention mechanism

      View table

      Table 2. Ablation test results of attention mechanism

      Attentional mechanismActivation functionParams /MPSNR/ dBSSIM
      Channel attentionCA13Sigmoid(·)4.8037.3030.9192
      CoA16h_swish(·)4.8237.1050.9186
      ECA15Sigmoid(·)4.7737.3960.9196
      CLASigmoid(·)4.7737.6790.9202
      CLA1+tanh(·)4.7737.7460.9205
      Spatial attentionSAM17Sigmoid(·)4.7836.3740.9127
      SLASigmoid(·)4.7736.8270.9141
      SLA1+tanh(·)4.7736.9540.9148
    • Table 3. Ablation test results of algorithm

      View table

      Table 3. Ablation test results of algorithm

      SDEBMFDEBCRCABCRCLABRAABParams /MPSNR /dBSSIM
      4.8037.3030.9192
      4.8137.5490.9197
      4.7737.7460.9205
      4.7837.7870.9207
      4.7937.7700.9210
      4.8037.8340.9210
    • Table 4. Weight factor λ configuration

      View table

      Table 4. Weight factor λ configuration

      λ00.010.050.10.51.0
      PSNR37.66237.79737.81837.83437.63637.531
    • Table 5. Analysis of reconstruct time for SRX4

      View table

      Table 5. Analysis of reconstruct time for SRX4

      DatasetSize /pixcelNumberDRN /sRAADRNet /sTime increment /s
      Set11024×1024203.013.130.12
      Set2512×512200.300.320.02
      Set3512×512200.530.570.04
    • Table 6. Data of experimental results

      View table

      Table 6. Data of experimental results

      AlgorithmEISet1Set2Set3
      X2X4X16X2X4X8X2X4X8
      BicubicPSNR /dB34.47031.47227.45027.34624.04919.89131.55427.47522.547
      SSIM0.90080.86160.81410.90830.82330.70940.93130.85500.7401
      SRCNNPSNR /dB35.33931.94028.00029.29625.78021.48832.78330.31725.071
      SSIM0.90620.87140.82300.92690.85880.77390.93970.89400.8098
      RDNPSNR /dB36.20532.27028.36230.03126.52622.02933.46731.15625.921
      SSIM0.90950.87420.82720.93610.87030.79050.94420.90340.8039
      RCANPSNR /dB36.70532.68128.63530.99927.28322.57334.09831.79226.873
      SSIM0.91610.87800.82830.93910.87880.80480.94710.90870.8423
      SANPSNR /dB37.00833.04128.86631.74327.83222.93534.60132.22327.347
      SSIM0.91830.88180.83760.94200.88520.81220.95030.90910.8492
      DRNPSNR /dB37.30333.37729.12132.67528.20923.28534.96432.82027.928
      SSIM0.91920.88330.84140.94730.88850.81840.95410.91410.8566
      RAADRNetPSNR /dB37.83434.17629.48333.40228.44923.54435.43433.48028.312
      SSIM0.92100.88660.84400.94980.89120.82190.95470.91760.8609
    Tools

    Get Citation

    Copy Citation Text

    Jinhe Fan, Jing Wu, Maolin He. Super-Resolution Computed Tomography Reconstruction of Residual Attention Aggregation Dual Regression Network[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 3, 2021

    Accepted: Dec. 13, 2021

    Published Online: Feb. 7, 2023

    The Author Email: Jing Wu (1320958927@qq.com)

    DOI:10.3788/LOP212865

    Topics