Chinese Journal of Lasers, Volume. 51, Issue 2, 0201003(2024)
All-Solid-State High-Energy Femtosecond Laser Pulse Nonlinear Compression Technology Based on Multilayer Thin Plates
[1] Li W Q, Gan Z B, Yu L H et al. 339 J high-energy Ti∶sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 43, 5681-5684(2018).
[2] Tang W L, Liu S, Cheng G H. Study on writing double line waveguide in Yb3+∶Phosphate glass by femtosecond laser[J]. Chinese Journal of Lasers, 42, 0406005(2015).
[3] Wu X F, Mei S L. Research progress in femtosecond laser machining mechanism and simulation analysis[J]. Laser & Optoelectronics Progress, 58, 1900005(2021).
[4] Wang S C, Xiao D, Yang J J et al. Investigation of multi-wavelength tunable Ti∶sapphire femtosecond laser[J]. Chinese Journal of Lasers, 23, 295-299(1996).
[5] Zhang W L, Wang Q Y. Two-way chirp compensation in a self-mode-locked Ti∶sapphire laser[J]. Chinese Journal of Lasers, 24, 865-868(1997).
[6] Zhou J, Taft G, Huang C P et al. Pulse evolution in a broad-bandwidth Ti∶sapphire laser[J]. Optics Letters, 19, 1149-1151(1994).
[7] Liu C, Wang Z H, Li W C et al. Contrast enhancement in a Ti∶sapphire chirped-pulse amplification laser system with a noncollinear femtosecond optical-parametric amplifier[J]. Optics Letters, 35, 3096-3098(2010).
[8] Chu Y X, Gan Z B, Liang X Y et al. High-energy large-aperture Ti∶sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 40, 5011-5014(2015).
[9] Zhao Q K, Cong Z H, Liu Z J et al. Hundred microjoule femtosecond fiber chirped pulse amplification laser system[J]. Chinese Journal of Lasers, 48, 0701001(2021).
[10] Russbueldt P, Mans T, Weitenberg J et al. Compact diode-pumped 1.1 kW Yb∶YAG innoslab femtosecond amplifier[J]. Optics Letters, 35, 4169-4171(2010).
[11] Saraceno C J, Emaury F, Schriber C et al. Toward millijoule-level high-power ultrafast thin-disk oscillators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 106-123(2014).
[12] Müller M, Kienel M, Klenke A et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 41, 3439-3442(2016).
[13] Saraceno C J, Emaury F, Heckl O H et al. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment[J]. Optics Express, 20, 23535-23541(2012).
[14] Travers J C, Stone J M, Rulkov A B et al. Optical pulse compression in dispersion decreasing photonic crystal fiber[J]. Optics Express, 15, 13203-13211(2007).
[15] Jocher C, Eidam T, Hädrich S et al. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power[J]. Optics Letters, 37, 4407-4409(2012).
[16] Nisoli M, De Silvestri S, Svelto O. Generation of high-energy 10-fs pulses by a new pulse compression technology[C], CTuR5(1996).
[17] De Silvestri S, Nisoli M, Sansone G et al. Few-cycle pulses by external compression[J]. Topics in Aplied Physics, 95, 137-177(2004).
[18] Russbueldt P, Weitenberg J, Schulte J et al. Scalable 30 fs laser source with 530 W average power[J]. Optics Letters, 44, 5222-5225(2019).
[19] Rolland C, Corkum P B. Compression of high-power optical pulses[J]. Journal of the Optical Society of America B, 5, 641-647(1988).
[20] Seidel M, Arisholm G, Brons J et al. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses[J]. Optics Express, 24, 9412-9428(2016).
[21] Seidel M, Brons J, Arisholm G et al. Efficient high-power ultrashort pulse compression in self-defocusing bulk media[J]. Scientific Reports, 7, 1410(2017).
[22] Bache M, Bang O, Krolikowski W et al. Limits to compression with cascaded quadratic soliton compressors[J]. Optics Express, 16, 3273-3287(2008).
[23] Voronin A A, Zheltikov A M, Ditmire T et al. Subexawatt few-cycle lightwave generation via multipetawatt pulse compression[J]. Optics Communications, 291, 299-303(2013).
[24] Schulte J, Sartorius T, Weitenberg J et al. Nonlinear pulse compression in a multi-pass cell[J]. Optics Letters, 41, 4511-4514(2016).
[25] Weitenberg J, Vernaleken A, Schulte J et al. Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 µJ pulse energy and 300 W average power[J]. Optics Express, 25, 20502-20510(2017).
[26] Viotti A L, Li C, Arisholm G et al. Few-cycle pulse generation by double-stage hybrid multi-pass multi-plate nonlinear pulse compression[J]. Optics Letters, 48, 984-987(2023).
[27] Zhu B B, Fu Z Y, Chen Y D et al. Spatially homogeneous few-cycle compression of Yb lasers via all-solid-state free-space soliton management[J]. Optics Express, 30, 2918-2932(2022).
[28] Lu C H, Wu W H, Kuo S H et al. Greater than 50 times compression of 1030 nm Yb: KGW laser pulses to single-cycle duration[J]. Optics Express, 27, 15638-15648(2019).
Get Citation
Copy Citation Text
Yuehao Han, Ruyi Feng, Youming Liu, Jinyang Zou, Bowen Liu, Minglie Hu. All-Solid-State High-Energy Femtosecond Laser Pulse Nonlinear Compression Technology Based on Multilayer Thin Plates[J]. Chinese Journal of Lasers, 2024, 51(2): 0201003
Category: laser devices and laser physics
Received: May. 8, 2023
Accepted: May. 30, 2023
Published Online: Jan. 4, 2024
The Author Email: Liu Bowen (bwliu@tju.edu.cn)
CSTR:32183.14.CJL230803