Chinese Journal of Lasers, Volume. 51, Issue 2, 0201003(2024)

All-Solid-State High-Energy Femtosecond Laser Pulse Nonlinear Compression Technology Based on Multilayer Thin Plates

Yuehao Han1, Ruyi Feng1, Youming Liu1, Jinyang Zou1, Bowen Liu1,2、*, and Minglie Hu1,2
Author Affiliations
  • 1Ultrafast Laser Laboratory, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, 300072Tianjin, China
  • 2Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518055, Guangdong, China
  • show less
    References(28)

    [1] Li W Q, Gan Z B, Yu L H et al. 339 J high-energy Ti∶sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 43, 5681-5684(2018).

    [2] Tang W L, Liu S, Cheng G H. Study on writing double line waveguide in Yb3+∶Phosphate glass by femtosecond laser[J]. Chinese Journal of Lasers, 42, 0406005(2015).

    [3] Wu X F, Mei S L. Research progress in femtosecond laser machining mechanism and simulation analysis[J]. Laser & Optoelectronics Progress, 58, 1900005(2021).

    [4] Wang S C, Xiao D, Yang J J et al. Investigation of multi-wavelength tunable Ti∶sapphire femtosecond laser[J]. Chinese Journal of Lasers, 23, 295-299(1996).

    [5] Zhang W L, Wang Q Y. Two-way chirp compensation in a self-mode-locked Ti∶sapphire laser[J]. Chinese Journal of Lasers, 24, 865-868(1997).

    [6] Zhou J, Taft G, Huang C P et al. Pulse evolution in a broad-bandwidth Ti∶sapphire laser[J]. Optics Letters, 19, 1149-1151(1994).

    [7] Liu C, Wang Z H, Li W C et al. Contrast enhancement in a Ti∶sapphire chirped-pulse amplification laser system with a noncollinear femtosecond optical-parametric amplifier[J]. Optics Letters, 35, 3096-3098(2010).

    [8] Chu Y X, Gan Z B, Liang X Y et al. High-energy large-aperture Ti∶sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 40, 5011-5014(2015).

    [9] Zhao Q K, Cong Z H, Liu Z J et al. Hundred microjoule femtosecond fiber chirped pulse amplification laser system[J]. Chinese Journal of Lasers, 48, 0701001(2021).

    [10] Russbueldt P, Mans T, Weitenberg J et al. Compact diode-pumped 1.1 kW Yb∶YAG innoslab femtosecond amplifier[J]. Optics Letters, 35, 4169-4171(2010).

    [11] Saraceno C J, Emaury F, Schriber C et al. Toward millijoule-level high-power ultrafast thin-disk oscillators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 106-123(2014).

    [12] Müller M, Kienel M, Klenke A et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 41, 3439-3442(2016).

    [13] Saraceno C J, Emaury F, Heckl O H et al. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment[J]. Optics Express, 20, 23535-23541(2012).

    [14] Travers J C, Stone J M, Rulkov A B et al. Optical pulse compression in dispersion decreasing photonic crystal fiber[J]. Optics Express, 15, 13203-13211(2007).

    [15] Jocher C, Eidam T, Hädrich S et al. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power[J]. Optics Letters, 37, 4407-4409(2012).

    [16] Nisoli M, De Silvestri S, Svelto O. Generation of high-energy 10-fs pulses by a new pulse compression technology[C], CTuR5(1996).

    [17] De Silvestri S, Nisoli M, Sansone G et al. Few-cycle pulses by external compression[J]. Topics in Aplied Physics, 95, 137-177(2004).

    [18] Russbueldt P, Weitenberg J, Schulte J et al. Scalable 30 fs laser source with 530 W average power[J]. Optics Letters, 44, 5222-5225(2019).

    [19] Rolland C, Corkum P B. Compression of high-power optical pulses[J]. Journal of the Optical Society of America B, 5, 641-647(1988).

    [20] Seidel M, Arisholm G, Brons J et al. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses[J]. Optics Express, 24, 9412-9428(2016).

    [21] Seidel M, Brons J, Arisholm G et al. Efficient high-power ultrashort pulse compression in self-defocusing bulk media[J]. Scientific Reports, 7, 1410(2017).

    [22] Bache M, Bang O, Krolikowski W et al. Limits to compression with cascaded quadratic soliton compressors[J]. Optics Express, 16, 3273-3287(2008).

    [23] Voronin A A, Zheltikov A M, Ditmire T et al. Subexawatt few-cycle lightwave generation via multipetawatt pulse compression[J]. Optics Communications, 291, 299-303(2013).

    [24] Schulte J, Sartorius T, Weitenberg J et al. Nonlinear pulse compression in a multi-pass cell[J]. Optics Letters, 41, 4511-4514(2016).

    [25] Weitenberg J, Vernaleken A, Schulte J et al. Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 µJ pulse energy and 300 W average power[J]. Optics Express, 25, 20502-20510(2017).

    [26] Viotti A L, Li C, Arisholm G et al. Few-cycle pulse generation by double-stage hybrid multi-pass multi-plate nonlinear pulse compression[J]. Optics Letters, 48, 984-987(2023).

    [27] Zhu B B, Fu Z Y, Chen Y D et al. Spatially homogeneous few-cycle compression of Yb lasers via all-solid-state free-space soliton management[J]. Optics Express, 30, 2918-2932(2022).

    [28] Lu C H, Wu W H, Kuo S H et al. Greater than 50 times compression of 1030 nm Yb: KGW laser pulses to single-cycle duration[J]. Optics Express, 27, 15638-15648(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yuehao Han, Ruyi Feng, Youming Liu, Jinyang Zou, Bowen Liu, Minglie Hu. All-Solid-State High-Energy Femtosecond Laser Pulse Nonlinear Compression Technology Based on Multilayer Thin Plates[J]. Chinese Journal of Lasers, 2024, 51(2): 0201003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: May. 8, 2023

    Accepted: May. 30, 2023

    Published Online: Jan. 4, 2024

    The Author Email: Liu Bowen (bwliu@tju.edu.cn)

    DOI:10.3788/CJL230803

    CSTR:32183.14.CJL230803

    Topics