Chinese Journal of Quantum Electronics, Volume. 42, Issue 4, 464(2025)
Quantum multiparameter estimation enhanced by feedback control
[1] Dixit A V, Chakram S, He K et al. Searching for dark matter with a superconducting qubit[J]. Physical Review Letters, 126, 141302(2021).
[2] Cimini V, Gianani I, Ruggiero L et al. Quantum sensing for dynamical tracking of chemical processes[J]. Physical Review A, 99, 053817(2019).
[3] Li J, Chen X, Zhang D et al. Realization of a cold atom gyroscope in space[J]. National Science Review, 12, nwaf012(2025).
[4] Giovannetti V, Lloyd S, Maccone L. Quantum metrology[J]. Physical Review Letters, 96, 010401(2006).
[5] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 5, 222-229(2011).
[6] Yuan H D, Fung C F. Quantum parameter estimation with general dynamics[J]. npj Quantum Information, 3, 14(2017).
[7] Barbieri M. Optical quantum metrology[J]. PRX Quantum, 3, 010202(2022).
[8] Polino E, Valeri M, Spagnolo N et al. Photonic quantum metrology[J]. AVS Quantum Science, 2, 024703(2020).
[9] Paris M G A. Quantum estimation for quantum technology[J]. International Journal of Quantum Information, 7, 125-137(2009).
[10] Szczykulska M, Baumgratz T, Datta A. Multi-parameter quantum metrology[J]. Advances in Physics: X, 1, 621-639(2016).
[11] Demkowicz-Dobrzański R, Górecki W, Guţă M. Multi-parameter estimation beyond quantum Fisher information[J]. Journal of Physics A: Mathematical and Theoretical, 53, 363001(2020).
[12] Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of Modern Physics, 89, 035002(2017).
[13] Huang Z X, Lupo C, Kok P. Quantum-limited estimation of range and velocity[J]. PRX Quantum, 2, 030303(2021).
[14] Parniak M, Borówka S, Boroszko K et al. Beating the Rayleigh limit using two-photon interference[J]. Physical Review Letters, 121, 250503(2018).
[15] Boixo S, Flammia S T, Caves C M et al. Generalized limits for single-parameter quantum estimation[J]. Physical Review Letters, 98, 090401(2007).
[16] Liu J, Yuan H D, Lu X M et al. Quantum Fisher information matrix and multiparameter estimation[J]. Journal of Physics A: Mathematical and Theoretical, 53, 023001(2020).
[17] Xia B K, Huang J Z, Li H J et al. Toward incompatible quantum limits on multiparameter estimation[J]. Nature Communications, 14, 1021(2023).
[18] Ragy S, Jarzyna M, Demkowicz-Dobrzański R. Compatibility in multiparameter quantum metrology[J]. Physical Review A, 94, 052108(2016).
[19] Lu X M, Wang X G. Incorporating Heisenberg's uncertainty principle into quantum multiparameter estimation[J]. Physical Review Letters, 126, 120503(2021).
[20] Bao H, Duan J L, Jin S C et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements[J]. Nature, 581, 159-163(2020).
[21] Albarelli F, Friel J F, Datta A. Evaluating the holevo cramér-Rao bound for multiparameter quantum metrology[J]. Physical Review Letters, 123, 200503(2019).
[22] Gill R D, Massar S. State estimation for large ensembles[J]. Physical Review A, 61, 042312(2000).
[23] Nagaoka H. A new approach to Cramér-Rao bounds for quantum state estimation[J]. Asymptotic Theory of Quantum Statistical Inference, 100-112(2005).
[24] Yuan H D. Sequential feedback scheme outperforms the parallel scheme for Hamiltonian parameter estimation[J]. Physical Review Letters, 117, 160801(2016).
[25] Hou Z B, Jin Y, Chen H Z et al. "Super-Heisenberg" and Heisenberg scalings achieved simultaneously in the estimation of a rotating field[J]. Physical Review Letters, 126, 070503(2021).
[26] Hou Z B, Tang J F, Chen H Z et al. Zero-trade-off multiparameter quantum estimation via simultaneously saturating multiple Heisenberg uncertainty relations[J]. Science Advances, 7, eabd2986(2021).
[27] Xu H, Li J N, Liu L Q et al. Generalizable control for quantum parameter estimation through reinforcement learning[J]. npj Quantum Information, 5, 82(2019).
[28] Yang J, Pang S S, Chen Z K et al. Variational principle for optimal quantum controls in quantum metrology[J]. Physical Review Letters, 128, 160505(2022).
[29] Yang Y, Ru S H, An M et al. Multiparameter simultaneous optimal estimation with an SU(2) coding unitary evolution[J]. Physical Review A, 105, 022406(2022).
[30] Liu J, Jing X X, Wang X G. Quantum metrology with unitary parametrization processes[J]. Scientific Reports, 5, 8565(2015).
[31] Matsumoto K. A new approach to the Cramér-Rao-type bound of the pure-state model[J]. Journal of Physics A: Mathematical and General, 35, 3111-3123(2002).
[32] Yang J, Pang S S, Zhou Y Y et al. Optimal measurements for quantum multiparameter estimation with general states[J]. Physical Review A, 100, 032104(2019).
[33] Hou Z B, Zhang Z, Xiang G Y et al. Minimal tradeoff and ultimate precision limit of multiparameter quantum magnetometry under the parallel scheme[J]. Physical Review Letters, 125, 020501(2020).
[35] Liu J, Yuan H D. Quantum parameter estimation with optimal control[J]. Physical Review A, 96, 012117(2017).
[36] Pang S S, Jordan A N. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians[J]. Nature Communications, 8, 14695(2017).
[37] Dutkiewicz A, O'Brien T E, Schuster T. The advantage of quantum control in many-body Hamiltonian learning[J]. Quantum, 8, 1537(2024).
[38] Yin P, Zhao X B, Yang Y X et al. Experimental super-Heisenberg quantum metrology with indefinite gate order[J]. Nature Physics, 19, 1122-1127(2023).
[39] Valeri M, Cimini V, Piacentini S et al. Experimental multiparameter quantum metrology in adaptive regime[J]. Physical Review Research, 5, 013138(2023).
[40] Zhou S S, Michalakis S, Gefen T. Optimal protocols for quantum metrology with noisy measurements[J]. PRX Quantum, 4, 040305(2023).
[41] Ding D S, Liu Z K, Shi B S et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 18, 1447-1452(2022).
[42] Deng X W, Li S, Chen Z J et al. Quantum-enhanced metrology with large Fock states[J]. Nature Physics, 20, 1874-1880(2024).
[43] Proctor T J, Knott P A, Dunningham J A. Multiparameter estimation in networked quantum sensors[J]. Physical Review Letters, 120, 080501(2018).
[44] Tsang M, Nair R, Lu X M. Quantum theory of superresolution for two incoherent optical point sources[J]. Physical Review X, 6, 031033(2016).
[45] Macieszczak K, Guţă M, Lesanovsky I et al. Dynamical phase transitions as a resource for quantum enhanced metrology[J]. Physical Review A, 93, 022103(2016).
[46] Garbe L, Bina M, Keller A et al. Critical quantum metrology with a finite-component quantum phase transition[J]. Physical Review Letters, 124, 120504(2020).
[47] Chu Y M, Zhang S L, Yu B Y et al. Dynamic framework for criticality-enhanced quantum sensing[J]. Physical Review Letters, 126, 010502(2021).
[48] Hodaei H, Hassan A U, Wittek S et al. Enhanced sensitivity at higher-order exceptional points[J]. Nature, 548, 187-191(2017).
[49] Budich J C, Bergholtz E J. Non-Hermitian topological sensors[J]. Physical Review Letters, 125, 180403(2020).
[50] Hotter C, Ritsch H, Gietka K. Combining critical and quantum metrology[J]. Physical Review Letters, 132, 060801(2024).
[51] Di Candia R, Minganti F, Petrovnin K V et al. Critical parametric quantum sensing[J]. npj Quantum Information, 9, 23(2023).
[52] Parto M, Leefmans C, Williams J et al. Enhanced sensitivity via non-Hermitian topology[J]. Light: Science & Applications, 14, 6(2025).
[53] Yang Y, Yuan H D, Li F L. Quantum multiparameter estimation enhanced by a topological phase transition[J]. Physical Review A, 109, 022604(2024).
Get Citation
Copy Citation Text
Yu YANG, Pei ZHANG, Fuli LI. Quantum multiparameter estimation enhanced by feedback control[J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 464
Category: Special Issue on...
Received: Jan. 21, 2025
Accepted: --
Published Online: Jul. 31, 2025
The Author Email: Fuli LI (flli@mail.xjtu.edu.cn)