Journal of Inorganic Materials, Volume. 40, Issue 5, 481(2025)
[1] PARUL, KAUR K, BADRU R et al. Photodegradation of organic pollutants using heterojunctions: a review[J]. Journal of Environmental Chemical Engineering(2020).
[2] HU M, QUAN Y, YANG S et al. Self-cleaning semiconductor heterojunction substrate: ultrasensitive detection and photocatalytic degradation of organic pollutants for environmental remediation[J]. Microsystems & Nanoengineering(2020).
[3] QIAN J, XUE Y, AO Y et al. Hydrothermal synthesis of CeO2/NaNbO3 composites with enhanced photocatalytic performance[J]. Chinese Journal of Catalysis(2018).
[4] CHEN D, CHENG Y, ZHOU N et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review[J]. Journal of Cleaner Production(2020).
[6] TANG J, LIU Y, ZHANG X et al. Fabrication of loaded Ag sensitized round-the-clock highly active Z-scheme BiFeO3/Ag/ Sr2MgSi2O7:Eu2+, Dy3+/Ag photocatalyst for metronidazole degradation and hydrogen production[J]. Journal of Power Sources(2023).
[7] HAI O, PEI M, YANG E et al. Exploration of long afterglow luminescence materials work as round-the-clock photocatalysts[J]. Journal of Alloys and Compounds(2021).
[8] XIAO B, TONG S, YAN L et al. Round-the-clock photocatalysis of plasmonic Ag-enhanced Z-scheme heterojunction material Sr2MgSi2O7: (Eu, Dy)/g-C3N4@Ag under visible-light irradiation[J]. Molecular Catalysis(2024).
[9] VAIDYANATHAN S. Recent progress on lanthanide-based long persistent phosphors: an overview[J]. Journal of Materials Chemistry C(2023).
[10] DING Y, YE Y, WANG C et al. “Light battery” role of long afterglow phosphor for round-the-clock environmental photocatalysis[J]. Journal of Cleaner Production(2024).
[11] LI Y, GUO C, YUAN J et al. Recent advances and prospects of persistent luminescent materials in public health applications[J]. Chemical Engineering Journal(2024).
[12] JANY H F, KARLA V L, PETER H et al. Wastewater sludge recycling: an efficient catalyst for photo-Fenton degradation of antibiotics and effluent disinfection[J]. Chemical Engineering Journal(2023).
[13] DU C, ZHANG Y, ZHANG Z et al. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal
[14] LIU X, ZHOU Y, ZHANG J et al. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps[J]. Chemical Engineering Journal(2018).
[15] CAO Z, ZHANG J, ZHOU J et al. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye.[J]. Journal of Environmental Management(2017).
[16] PEI L, MA Z, ZHONG J et al. Oxygen vacancy-rich Sr2MgSi2O7: Eu2+, Dy3+ long afterglow phosphor as a round-the-clock catalyst for selective reduction of CO2 to CO[J]. Advanced Functional Materials(2022).
[17] JIANG T, XIE W, GENG S et al. Constructing oxygen vacancy- regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis[J]. Chinese Journal of Catalysis(2022).
[18] ZHAO W, WEI Z, LI C et al. An oxygen-vacancy rich ZnFe2O4/BiOI/AgI heterojunction for enhanced photocatalytic and photo-Fenton performance
[19] KONG Y, CHEN S, HE J et al. Oxygen-vacancy rich in melilite to modulate the persistent luminescence for multi-functional applications[J]. Journal of Materials Chemistry C(2023).
[20] YANG T, JIANG H, HAI O et al. Effect of oxygen vacancies on the persistent luminescence of Y3Al2Ga3O12: Ce3+,Yb3+ phosphors[J]. Inorganic Chemistry(2021).
[21] FAN X, XU L, LIU W et al. Energy transfer in dual-emission LiY6(BO3)3O5: Bi3+, Eu3+ phosphors for temperature sensing applications[J]. Ceramics International(2024).
[22] ZHU Y, LIANG Y, LIU S et al. Narrow-band green-emitting Sr2MgAl22O36:Mn2+ phosphors with superior thermal stability and wide color gamut for backlighting display applications[J]. Advanced Optical Materials(2019).
[23] WANG S, WU H, FAN Y et al. A highly efficient narrow-band blue phosphor of Bi3+-activated cubic borate Ba3Lu2B6O15 towards backlight display applications[J]. Chemical Engineering Journal(2022).
[24] HAI O, PEI M, REN Q et al. Ag nanoparticles significantly improve the slow decay brightness of SrAl2O4: Eu2+, Dy3+ by the surface plasmon effect[J]. Dalton Transactions(2022).
[25] YANG E, HAI O, REN Q et al. Improved trap capability of shallow traps of Sr2MgSi2O7: Eu2, Dy3+ through depositing Au nanoparticles[J]. Journal of Alloys and Compounds(2021).
[26] LU J C, BAI X L, ZHAO Q Y et al. Construction of AgI/PCN-224 Z-scheme heterojunction for efficient photocatalytic degradation of tetracycline hydrochloride: pathways, mechanism and theoretical calculations[J]. Journal of Cleaner Production(2024).
[27] WEI B, WANG C, HE Y et al. A novel FeS2@g-C3N4 composite with enhanced photo-Fenton catalytic activity for pollutant degradation[J]. Composites Communications(2021).
[28] LUO J, ZHAO J, XIE Y et al. Surface modified Bi2SiO5 microflowers with Fe3+ doping for efficient degradation of organic contaminants[J]. Journal of Alloys and Compounds(2022).
[29] GUAN F, YANG H, LI J et al. Preparation of Na+/g-C3N4 materials and their photocatalytic degradation mechanism on methylene blue[J]. Journal of Inorganic Materials(2024).
[30] DU Z, LI K, ZHOU S et al. Degradation of ofloxacin with heterogeneous photo-Fenton catalyzed by biogenic Fe-Mn oxides[J]. Chemical Engineering Journal(2020).
[31] RICARDO I A, PANIAGUA C E S, PAIVA V A B et al. Degradation and initial mechanism pathway of chloramphenicol by photo-Fenton process at circumneutral pH.[J]. Chemical Engineering Journal(2018).
[32] ZHOU D M, CHEN L J, ZHAO X et al. Persistent production of multiple active species with copper doped zinc gallate nanoparticles for light-independent photocatalytic degradation of organic pollutants[J]. Journal of Colloid and Interface Science(2024).
[33] ZOU P, LI Z, JIA P et al. Enhanced photocatalytic activity of bismuth oxychloride by
Get Citation
Copy Citation Text
Xiaoxuan FAN, Yonggui ZHENG, Lirong XU, Zimin YAO, Shuo CAO, Kexin WANG, Jiwei WANG.
Category:
Received: Nov. 27, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Kexin WANG (wyf93jl@163.com), Jiwei WANG (wangjiwei@lnu.edu.cn)