Journal of Inorganic Materials, Volume. 40, Issue 5, 481(2025)

Organic Pollutant Fenton Degradation Driven by Self-activated Afterglow from Oxygen-vacancy-rich LiYScGeO4: Bi3+ Long Afterglow Phosphor

Xiaoxuan FAN, Yonggui ZHENG, Lirong XU, Zimin YAO, Shuo CAO, Kexin WANG*, and Jiwei WANG*
Author Affiliations
  • College of Physics, Liaoning University, Shenyang 110036, China
  • show less
    References(32)

    [1] PARUL, KAUR K, BADRU R et al. Photodegradation of organic pollutants using heterojunctions: a review[J]. Journal of Environmental Chemical Engineering(2020).

    [2] HU M, QUAN Y, YANG S et al. Self-cleaning semiconductor heterojunction substrate: ultrasensitive detection and photocatalytic degradation of organic pollutants for environmental remediation[J]. Microsystems & Nanoengineering(2020).

    [3] QIAN J, XUE Y, AO Y et al. Hydrothermal synthesis of CeO2/NaNbO3 composites with enhanced photocatalytic performance[J]. Chinese Journal of Catalysis(2018).

    [4] CHEN D, CHENG Y, ZHOU N et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review[J]. Journal of Cleaner Production(2020).

    [6] TANG J, LIU Y, ZHANG X et al. Fabrication of loaded Ag sensitized round-the-clock highly active Z-scheme BiFeO3/Ag/ Sr2MgSi2O7:Eu2+, Dy3+/Ag photocatalyst for metronidazole degradation and hydrogen production[J]. Journal of Power Sources(2023).

    [7] HAI O, PEI M, YANG E et al. Exploration of long afterglow luminescence materials work as round-the-clock photocatalysts[J]. Journal of Alloys and Compounds(2021).

    [8] XIAO B, TONG S, YAN L et al. Round-the-clock photocatalysis of plasmonic Ag-enhanced Z-scheme heterojunction material Sr2MgSi2O7: (Eu, Dy)/g-C3N4@Ag under visible-light irradiation[J]. Molecular Catalysis(2024).

    [9] VAIDYANATHAN S. Recent progress on lanthanide-based long persistent phosphors: an overview[J]. Journal of Materials Chemistry C(2023).

    [10] DING Y, YE Y, WANG C et al. “Light battery” role of long afterglow phosphor for round-the-clock environmental photocatalysis[J]. Journal of Cleaner Production(2024).

    [11] LI Y, GUO C, YUAN J et al. Recent advances and prospects of persistent luminescent materials in public health applications[J]. Chemical Engineering Journal(2024).

    [12] JANY H F, KARLA V L, PETER H et al. Wastewater sludge recycling: an efficient catalyst for photo-Fenton degradation of antibiotics and effluent disinfection[J]. Chemical Engineering Journal(2023).

    [13] DU C, ZHANG Y, ZHANG Z et al. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo- Fenton: a review[J]. Chemical Engineering Journal(2022).

    [14] LIU X, ZHOU Y, ZHANG J et al. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps[J]. Chemical Engineering Journal(2018).

    [15] CAO Z, ZHANG J, ZHOU J et al. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye.[J]. Journal of Environmental Management(2017).

    [16] PEI L, MA Z, ZHONG J et al. Oxygen vacancy-rich Sr2MgSi2O7: Eu2+, Dy3+ long afterglow phosphor as a round-the-clock catalyst for selective reduction of CO2 to CO[J]. Advanced Functional Materials(2022).

    [17] JIANG T, XIE W, GENG S et al. Constructing oxygen vacancy- regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis[J]. Chinese Journal of Catalysis(2022).

    [18] ZHAO W, WEI Z, LI C et al. An oxygen-vacancy rich ZnFe2O4/BiOI/AgI heterojunction for enhanced photocatalytic and photo-Fenton performance via double Z-scheme structure[J]. Materials Research Bulletin(2024).

    [19] KONG Y, CHEN S, HE J et al. Oxygen-vacancy rich in melilite to modulate the persistent luminescence for multi-functional applications[J]. Journal of Materials Chemistry C(2023).

    [20] YANG T, JIANG H, HAI O et al. Effect of oxygen vacancies on the persistent luminescence of Y3Al2Ga3O12: Ce3+,Yb3+ phosphors[J]. Inorganic Chemistry(2021).

    [21] FAN X, XU L, LIU W et al. Energy transfer in dual-emission LiY6(BO3)3O5: Bi3+, Eu3+ phosphors for temperature sensing applications[J]. Ceramics International(2024).

    [22] ZHU Y, LIANG Y, LIU S et al. Narrow-band green-emitting Sr2MgAl22O36:Mn2+ phosphors with superior thermal stability and wide color gamut for backlighting display applications[J]. Advanced Optical Materials(2019).

    [23] WANG S, WU H, FAN Y et al. A highly efficient narrow-band blue phosphor of Bi3+-activated cubic borate Ba3Lu2B6O15 towards backlight display applications[J]. Chemical Engineering Journal(2022).

    [24] HAI O, PEI M, REN Q et al. Ag nanoparticles significantly improve the slow decay brightness of SrAl2O4: Eu2+, Dy3+ by the surface plasmon effect[J]. Dalton Transactions(2022).

    [25] YANG E, HAI O, REN Q et al. Improved trap capability of shallow traps of Sr2MgSi2O7: Eu2, Dy3+ through depositing Au nanoparticles[J]. Journal of Alloys and Compounds(2021).

    [26] LU J C, BAI X L, ZHAO Q Y et al. Construction of AgI/PCN-224 Z-scheme heterojunction for efficient photocatalytic degradation of tetracycline hydrochloride: pathways, mechanism and theoretical calculations[J]. Journal of Cleaner Production(2024).

    [27] WEI B, WANG C, HE Y et al. A novel FeS2@g-C3N4 composite with enhanced photo-Fenton catalytic activity for pollutant degradation[J]. Composites Communications(2021).

    [28] LUO J, ZHAO J, XIE Y et al. Surface modified Bi2SiO5 microflowers with Fe3+ doping for efficient degradation of organic contaminants[J]. Journal of Alloys and Compounds(2022).

    [29] GUAN F, YANG H, LI J et al. Preparation of Na+/g-C3N4 materials and their photocatalytic degradation mechanism on methylene blue[J]. Journal of Inorganic Materials(2024).

    [30] DU Z, LI K, ZHOU S et al. Degradation of ofloxacin with heterogeneous photo-Fenton catalyzed by biogenic Fe-Mn oxides[J]. Chemical Engineering Journal(2020).

    [31] RICARDO I A, PANIAGUA C E S, PAIVA V A B et al. Degradation and initial mechanism pathway of chloramphenicol by photo-Fenton process at circumneutral pH.[J]. Chemical Engineering Journal(2018).

    [32] ZHOU D M, CHEN L J, ZHAO X et al. Persistent production of multiple active species with copper doped zinc gallate nanoparticles for light-independent photocatalytic degradation of organic pollutants[J]. Journal of Colloid and Interface Science(2024).

    [33] ZOU P, LI Z, JIA P et al. Enhanced photocatalytic activity of bismuth oxychloride by in-situ introducing oxygen vacancy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoxuan FAN, Yonggui ZHENG, Lirong XU, Zimin YAO, Shuo CAO, Kexin WANG, Jiwei WANG. Organic Pollutant Fenton Degradation Driven by Self-activated Afterglow from Oxygen-vacancy-rich LiYScGeO4: Bi3+ Long Afterglow Phosphor [J]. Journal of Inorganic Materials, 2025, 40(5): 481

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 27, 2024

    Accepted: --

    Published Online: Sep. 2, 2025

    The Author Email: Kexin WANG (wyf93jl@163.com), Jiwei WANG (wangjiwei@lnu.edu.cn)

    DOI:10.15541/jim20240495

    Topics