Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0220001(2023)

Marine Creature Detection Based on Sample Iterative Fusion

Lidong Wu1, Zongju Peng1,2、*, Xin Li2, Tao Su2, Fen Chen2, and Xiaodong Wang1
Author Affiliations
  • 1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315000, Zhejiang , China
  • 2School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 310027, China
  • show less
    Figures & Tables(14)
    Marine biological detection network model based on sample iterative fusion
    Res_Block structure
    Dilated_Block structure
    Deconv_Block structure
    Image fusion process
    Loss function curves of each target detection method
    Detection results of the proposed method on Taiwan fish datase. (a) Abudefduf lorenzi; (b) Acanthurus blochii; (c) Abudefduf bengalensis; (d) Acanthurus nigricauda; (e) Acanthurus japonicus; (f) Acanthuridae
    Detection result comparison of different methods. (a) Original image; (b) YOLOv4; (c) RFB; (d) proposed method
    • Table 1. Number of samples on URPC2018 dataset

      View table

      Table 1. Number of samples on URPC2018 dataset

      SampleTotalTrainTest
      Echinus4532672622
      Scallop343783232
      Starfish46392712337
    • Table 2. Number of samples on Taiwan fish dataset

      View table

      Table 2. Number of samples on Taiwan fish dataset

      SampleTotalTrainTest
      Abudefduf bengalensis453317136
      Abudefduf lorenzi463324139
      Abudefduf septemfasciatus343240103
      Abudefduf sexfasciatus20814662
      Abudefduf vaigiensis469328141
      Acanthuridae28419985
      Acanthurus blochii25017575
      Acanthurus dussumieri358251107
      Acanthurus japonicus349244105
      Acanthurus lineatus20714562
      Acanthurus nigricauda470329141
      Acanthurus nigrofuscus27119081
      Acanthurus olivaceus24917475
      Acanthurus olivaceus366256110
      Acanthurus pyroferus469328141
      Acanthurus thompsoni28520086
      Acanthurus xanthopterus493345148
      Aeoliscus strigatus32022496
    • Table 3. Ablation test

      View table

      Table 3. Ablation test

      Iterative fusionLwaterDilated_BlockDeconv_BlockAP /%mAP /%Speed /(frame·s-1
      EchinusScallopStarfish
      81.0889.6589.3586.6936.33
      86.3090.2489.8288.7949.31
      90.3590.8489.6590.2839.97
      84.7188.6390.2187.8535.89
      83.6689.0189.3887.3532.38
      85.4288.3490.1788.3130.15
      92.2490.3791.4691.3649.30
    • Table 4. Detection accuracy of different methods on URPC dataset

      View table

      Table 4. Detection accuracy of different methods on URPC dataset

      SampleFaster R-CNNSSDYOLOv3YOLOv4RoIMixRFBEfficientdetProposed method
      mAP66.2480.7981.6691.0692.4872.8486.1991.36
      Echinus47.3276.2385.3991.7793.7353.7187.2192.24
      Scallop75.2379.7785.8292.8293.6780.3981.0191.46
      Starfish76.1686.3873.7688.5890.0484.4290.3690.37
    • Table 5. Detection accuracy of different methods on Taiwan fish dataset

      View table

      Table 5. Detection accuracy of different methods on Taiwan fish dataset

      SampleFaster R-CNNSSDYOLOv3YOLOv4RoIMixRFBEfficientdetProposed method
      mAP25.9973.5473.0285.5588.9392.6272.1590.27
      Abudefduf bengalensis57.9973.7152.9087.3899.1398.2072.5399.36
      Abudefduf lorenzi57.9999.2994.7499.9599.9899.6062.02100.00
      Abudefduf septemfasciatus2.7188.4886.6290.7596.4399.1979.52100.00
      Abudefduf sexfasciatus55.4277.0588.2393.1892.7299.2583.3684.94
      Abudefduf vaigiensis19.6156.3772.0167.0280.9890.4277.4385.54
      Acanthuridae1.4243.2460.0062.5588.1376.8444.9146.97
      Acanthurus blochii6.2988.1258.6382.6299.9598.4289.46100.00
      Acanthurus dussumieri0.1741.9238.8189.0336.4982.7264.3185.97
      Acanthurus japonicus4.3062.0073.5490.6595.4694.9775.9696.15
      Acanthurus lineatus0.6882.0367.4445.5786.6595.5562.8290.97
      Acanthurus nigricauda4.8093.7871.3799.0998.6795.7794.41100.00
      Acanthurus nigrofuscus8.8360.7863.1882.0785.6986.3841.4369.47
      Acanthurus olivaceus13.4974.7773.3186.4384.9895.2358.8481.56
      Acanthurus olivaceus44.3085.1881.3999.3999.9794.6580.20100.00
      Acanthurus pyroferus58.4082.8285.1694.8994.6197.3489.4996.56
      Acanthurus thompsoni35.0181.2283.6189.19100.0097.0067.69100.00
      Acanthurus xanthopterus55.2945.5074.8888.1269.7866.1872.9487.42
      Aeoliscus strigatus41.1987.4288.5491.9891.1399.4681.37100.00
    • Table 6. Comparison of detection speed of different methods

      View table

      Table 6. Comparison of detection speed of different methods

      ParameterFaster R-CNNSSDYOLOv3YOLOv4RoIMixRFBEfficientdetProposed method
      Speed /(frame·s-123.6440.8030.2336.3323.7010.3818.5449.30
    Tools

    Get Citation

    Copy Citation Text

    Lidong Wu, Zongju Peng, Xin Li, Tao Su, Fen Chen, Xiaodong Wang. Marine Creature Detection Based on Sample Iterative Fusion[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0220001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Sep. 22, 2021

    Accepted: Nov. 8, 2021

    Published Online: Jan. 6, 2023

    The Author Email: Zongju Peng (pengzongju@126.com)

    DOI:10.3788/LOP212567

    Topics