Acta Optica Sinica, Volume. 39, Issue 12, 1228002(2019)

Remote Sensing Building Detection Based on Binarized Semantic Segmentation

Tianyou Zhu1,2,3, Feng Dong1,2, and Huixing Gong1,2、*
Author Affiliations
  • 1Key Laboratory of Infrared System Detection and Imaging, Chinese Academy of Sciences, Shanghai 200083, China
  • 2Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(32)

    [2] Vakalopoulou M, Karantzalos K, Komodakis N et al. Building detection in very high resolution multispectral data with deep learning features. [C]∥2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 26-31, 2015, Milan, Italy. New York: IEEE, 1873-1876(2015).

    [6] Lefèvre S, Weber J, Sheeren D. Automatic building extraction in VHR images using advanced morphological operators. [C]∥2007 Urban Remote Sensing Joint Event, April 11-13, 2007, Paris, France. New York: IEEE, 9702691(2007).

    [8] Wang M, Yuan S G, Pan J. Building detection in high resolution satellite urban image using segmentation, corner detection combined with adaptive windowed Hough Transform. [C]∥2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, July 21-26, 2013, Melbourne, VIC, Australia. New York: IEEE, 508-511(2013).

    [10] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. [C]∥Advances in Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada, United States. USA: NIPS(2012).

    [13] LeCun Y, Huang F J, Bottou L. Learning methods for generic object recognition with invariance to pose and lighting. [C]∥Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., June 27-July 2, 2004. Washington, DC, USA. New York: IEEE, 8168961(2004).

    [14] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 3431-3440(2015).

    [15] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 15523970(2015).

    [16] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).

    [17] Szegedy C, Vanhoucke V, Ioffe S et al. Rethinking the inception architecture for computer vision. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2818-2826(2016).

    [18] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. ∥Navab N, Hornegger J, Wells W, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science. Cham: Springer, 9351, 234-241(2015).

    [19] Chen L C, Zhu Y K, Papandreou G et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer, 11211, 833-851(2018).

    [20] Fu J, Liu J, Tian H J et al. Dual attention network for scene segmentation. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Long Beach, CA, USA. New York: IEEE, 3146-3154(2019).

    [21] Huang Z L, Wang X G, Huang L C et al. -11-28)[2019-05-26]. https:∥arxiv., org/abs/1811, 11721(2018).

    [22] Zhang X Y, Zhou X Y, Lin M X et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 6848-6856(2018).

    [23] Howard A G, Zhu M L, Chen B et al. -04-17)[2019-05-26]. https:∥arxiv., org/abs/1704, 04861(2017).

    [25] Paszke A, Chaurasia A, Kim S et al. -06-07) https:∥arxiv.org/abs/1606.02147ar[2019-05-26]. Xiv.(2016).

    [26] Ge S M, Luo Z, Zhao S W et al. Compressing deep neural networks for efficient visual inference. [C]∥2017 IEEE International Conference on Multimedia and Expo (ICME), July 10-14, 2017, Hong Kong, China. New York: IEEE, 667-672(2017).

    [27] Hubara I, Courbariaux M, Soudry D et al. Binarized neural networks. [C]∥Advances in Neural Information Processing Systems, December 5-10, 2016, Barcelona, Spain. USA: NIPS(2016).

    [29] Wan L, Zeiler M, Zhang S X et al. Regularization of neural networks using DropConnect[C]∥International Conference on Machine Learning, June 16-21, 2013, Atlanta, GA, United States., 28, 1058-1066(2013).

    [31] Han J, Moraga C. The influence of the sigmoid function parameters on the speed of backpropagation learning[M]. ∥Mira J, Sandoval F. From natural to artificial neural computation. IWANN 1995. Lecture notes in computer science. Berlin, Heidelberg: Springer, 930, 195-201(1995).

    [32] Horowitz M. 1.1 computing's energy problem (and what we can do about it). [C]∥2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), February 9-13, 2014, San Francisco, CA, USA. New York: IEEE, 10-14(2014).

    Tools

    Get Citation

    Copy Citation Text

    Tianyou Zhu, Feng Dong, Huixing Gong. Remote Sensing Building Detection Based on Binarized Semantic Segmentation[J]. Acta Optica Sinica, 2019, 39(12): 1228002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: May. 27, 2019

    Accepted: Aug. 13, 2019

    Published Online: Dec. 6, 2019

    The Author Email: Gong Huixing (hxgong@mail.sitp.ac.cn)

    DOI:10.3788/AOS201939.1228002

    Topics