Chinese Journal of Lasers, Volume. 50, Issue 11, 1101009(2023)

Research Progress and Prospect of Adaptive Optics Based on Deep Learning

Yiwen Hu1, Xin Liu1, Cuifang Kuang1,2, Xu Liu1,2, and Xiang Hao1、*
Author Affiliations
  • 1College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • 2Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, Zhejiang, China
  • show less
    References(76)

    [1] Angel J R P, Wizinowich P, Lloyd-Hart M et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 348, 221-224(1990).

    [2] Jin Y C, Zhang Y Y, Hu L J et al. Machine learning guided rapid focusing with sensor-less aberration corrections[J]. Optics Express, 26, 30162-30171(2018).

    [3] Alvarez Diez C, Shao F, Bille J. Pyramid and Hartmann-Shack wavefront sensor with artificial neural network for adaptive optics[J]. Journal of Modern Optics, 55, 683-689(2008).

    [4] Guo H, Korablinova N, Ren Q S et al. Wavefront reconstruction with artificial neural networks[J]. Optics Express, 14, 6456-6462(2006).

    [5] Wang N, Zhu L C, Ma S et al. Research on distortion wavefront prediction technique for laser communication system based on LSTM network[J]. Proceedings of SPIE, 12169, 121693D(2022).

    [6] Liu F W, Wu Y Q, Chen Q et al. Overview of advanced manufacturing technology of large-aperture aspheric mirror[J]. Opto-Electronic Engineering, 47, 65-87(2020).

    [7] Jiang W H, Xian H, Shen F. Detecting error of shack-hartmann wavefront sensor[J]. Chinese Journal of Quantum Electronics, 15, 218-227(1998).

    [8] Ragazzoni R, Ghedina A, Baruffolo A et al. Testing the pyramid wavefront sensor on the sky[J]. Proceedings of SPIE, 4007, 423-430(2000).

    [9] Ghigo M, Diolaiti E, Perennes F et al. Use of the LIGA process for the production of pyramid wavefront sensors for adaptive optics in astronomy[J]. Proceedings of SPIE, 5169, 55-61(2003).

    [10] Landman R, Haffert S Y. Nonlinear wavefront reconstruction with convolutional neural networks for Fourier-based wavefront sensors[J]. Optics Express, 28, 16644-16657(2020).

    [11] Rosenblatt F[M]. The perceptron, a perceiving and recognizing automaton project para(1957).

    [12] Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 65, 386-408(1958).

    [13] Olazaran M. A sociological study of the official history of the perceptrons controversy[J]. Social Studies of Science, 26, 611-659(1996).

    [14] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [15] Deng J, Dong W, Socher R et al. ImageNet: a large-scale hierarchical image database[C], 248-255(2009).

    [16] Silver D, Huang A, Maddison C J et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 529, 484-489(2016).

    [17] Silver D, Schrittwieser J, Simonyan K et al. Mastering the game of go without human knowledge[J]. Nature, 550, 354-359(2017).

    [18] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [19] Huang J T, Li J Y, Gong Y F. An analysis of convolutional neural networks for speech recognition[C], 4989-4993(2015).

    [20] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [21] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [22] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C](2015).

    [23] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 9, 1735-1780(1997).

    [24] Gers F A, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 12, 2451-2471(2000).

    [25] Greff K, Srivastava R K, Koutník J et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 28, 2222-2232(2017).

    [26] Vorontsov M A, Carhart G W, Cohen M et al. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration[J]. Journal of the Optical Society of America A, 17, 1440-1453(2000).

    [27] Weyrauch T, Vorontsov M A. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications[J]. Applied Optics, 44, 6388-6401(2005).

    [28] Zommer S, Ribak E N, Lipson S G et al. Simulated annealing in ocular adaptive optics[J]. Optics Letters, 31, 939-941(2006).

    [29] Yang P, Ao M W, Liu Y et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients[J]. Optics Express, 15, 17051-17062(2007).

    [30] Yin X L, Chang H A, Cui X Z et al. Adaptive turbulence compensation with a hybrid input-output algorithm in orbital angular momentum-based free-space optical communication[J]. Applied Optics, 57, 7644-7650(2018).

    [31] Chang H, Yin X L, Cui X Z et al. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm[J]. Optics Communications, 405, 271-275(2017).

    [32] Li M, Li Y P, Han J W. Gerchberg-Saxton algorithm based phase correction in optical wireless communication[J]. Physical Communication, 25, 323-327(2017).

    [33] Ma H M, Liu H Q, Qiao Y et al. Numerical study of adaptive optics compensation based on Convolutional Neural Networks[J]. Optics Communications, 433, 283-289(2019).

    [34] Tian Q H, Lu C D, Liu B et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system[J]. Optics Express, 27, 10765-10776(2019).

    [35] Dean B H, Aronstein D L, Smith J S et al. Phase retrieval algorithm for JWST Flight and Testbed Telescope[J]. Proceedings of SPIE, 6265, 626511(2006).

    [36] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [37] Byrd R H, Lu P H, Nocedal J et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 16, 1190-1208(1995).

    [38] Wang M H, Guo W, Yuan X H. Single-shot wavefront sensing with deep neural networks for free-space optical communications[J]. Optics Express, 29, 3465-3478(2021).

    [39] Tan M X, Le Q V. Efficientnet: rethinking model scaling for convolutional neural networks[C], 6105-6114(2019).

    [40] Nishizaki Y, Valdivia M, Horisaki R et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240-251(2019).

    [41] Chollet F. Xception: deep learning with depthwise separable convolutions[C], 1800-1807(2017).

    [42] Jin Y C, Chen J J, Wu C X et al. Wavefront reconstruction based on deep transfer learning for microscopy[J]. Optics Express, 28, 20738-20747(2020).

    [43] Sun B C, Saenko K. Deep CORAL: correlation alignment for deep domain adaptation[M]. Hua G, Jégou H. Computer vision-ECCV 2016 workshops. Lecture notes in computer science, 9915, 443-450(2016).

    [44] Andersen T, Owner-Petersen M, Enmark A. Neural networks for image-based wavefront sensing for astronomy[J]. Optics Letters, 44, 4618-4621(2019).

    [45] Wu Y, Guo Y M, Bao H A et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor[J]. Sensors, 20, 4877(2020).

    [46] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [47] Ju G H, Qi X, Ma H C et al. Feature-based phase retrieval wavefront sensing approach using machine learning[J]. Optics Express, 26, 31767-31783(2018).

    [48] Mukundan R, Ong S H, Lee P A. Image analysis by Tchebichef moments[J]. IEEE Transactions on Image Processing, 10, 1357-1364(2001).

    [49] Xin Q, Ju G H, Zhang C Y et al. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning[J]. Optics Express, 27, 26102-26119(2019).

    [50] Lu C D, Tian Q H, Zhu L et al. Mitigating the ambiguity problem in the CNN-based wavefront correction[J]. Optics Letters, 47, 3251-3254(2022).

    [51] Shi Y P, Liu C L. Positioning accuracy improvement of spot centroid for shack-hartmann wavefront sensor[J]. Laser & Optoelectronics Progress, 54, 081201(2017).

    [52] Li Z Q, Li X Y. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks[J]. Optics Express, 26, 31675-31692(2018).

    [53] Hu L J, Hu S W, Gong W et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection[J]. Optics Express, 27, 33504-33517(2019).

    [54] Swanson R, Lamb M, Correia C et al. Wavefront reconstruction and prediction with convolutional neural networks[J]. Proceedings of SPIE, 10703, 107031F(2018).

    [55] Barchers J D, Fried D L, Link D J. Evaluation of the performance of Hartmann sensors in strong scintillation[J]. Applied Optics, 41, 1012-1021(2002).

    [56] Akondi V, Steven S, Dubra A. Centroid error due to non-uniform lenslet illumination in the Shack-Hartmann wavefront sensor[J]. Optics Letters, 44, 4167-4170(2019).

    [57] DuBose T B, Gardner D F, Watnik A T. Intensity-enhanced deep network wavefront reconstruction in Shack–Hartmann sensors[J]. Optics Letters, 45, 1699-1702(2020).

    [58] Huang G, Liu Z, Van Der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).

    [59] Hu L J, Hu S W, Gong W et al. Deep learning assisted Shack–Hartmann wavefront sensor for direct wavefront detection[J]. Optics Letters, 45, 3741-3744(2020).

    [60] Zhang Z X, Liu Q J, Wang Y H. Road extraction by deep residual U-net[J]. IEEE Geoscience and Remote Sensing Letters, 15, 749-753(2018).

    [62] Dai G M[M]. Wavefront optics for vision correction(2008).

    [63] Hu S W, Hu L J, Gong W et al. Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes[J]. Frontiers of Information Technology & Electronic Engineering, 22, 1277-1288(2021).

    [64] de Bruijne B, Vdovin G, Soloviev O. Extended scene deep learning wavefront sensing[J]. Journal of the Optical Society of America A, 39, 621-627(2022).

    [65] Ragazzoni R, Farinato J. Sensitivity of a pyramidic Wave Front sensor in closed loop adaptive optics[J]. Astronomy and Astrophysics, 350, L23-L26(1999).

    [66] Vérinaud C. On the nature of the measurements provided by a pyramid wave-front sensor[J]. Optics Communications, 233, 27-38(2004).

    [67] Chen H, Wei L, He Y et al. Deep learning assisted plenoptic wavefront sensor for direct wavefront detection[J]. Optics Express, 31, 2989-3004(2023).

    [68] Jiang P Z, Xu J P, Liang Y H et al. Comparison of the Shack-Hartmann and plenoptic sensor in closed-loop adaptive optics system[J]. Optical Engineering, 55, 033105(2016).

    [69] Clare R M, Lane R G. Phase retrieval from subdivision of the focal plane with a lenslet array[J]. Applied Optics, 43, 4080-4087(2004).

    [70] Clare R M, Lane R G. Wave-front sensing from subdivision of the focal plane with a lenslet array[J]. Journal of the Optical Society of America A, 22, 117-125(2005).

    [71] Li Z Q, Li X Y, Liang R G. Random two-frame interferometry based on deep learning[J]. Optics Express, 28, 24747-24760(2020).

    [72] Whang A J W, Chen Y Y, Chang C M et al. Prediction technique of aberration coefficients of interference fringes and phase diagrams based on convolutional neural network[J]. Optics Express, 28, 37601-37611(2020).

    [73] Liu X, Yang Z M, Dou J T et al. Fast demodulation of single-shot interferogram via convolutional neural network[J]. Optics Communications, 487, 126813(2021).

    [74] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).

    [75] Goi E, Schoenhardt S, Gu M. Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks[J]. Nature Communications, 13, 7531(2022).

    [76] Pan X S, Zuo H, Bai H et al. Real-time wavefront correction using diffractive optical networks[J]. Optics Express, 31, 1067-1078(2023).

    Tools

    Get Citation

    Copy Citation Text

    Yiwen Hu, Xin Liu, Cuifang Kuang, Xu Liu, Xiang Hao. Research Progress and Prospect of Adaptive Optics Based on Deep Learning[J]. Chinese Journal of Lasers, 2023, 50(11): 1101009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jan. 31, 2023

    Accepted: May. 10, 2023

    Published Online: Jun. 5, 2023

    The Author Email: Hao Xiang (haox@zju.edu.cn)

    DOI:10.3788/CJL230470

    Topics