Acta Optica Sinica, Volume. 43, Issue 17, 1714003(2023)
Research Progress on Wide Temperature Operation Fiber Laser
[1] Nilsson J, Payne D N. High-power fiber lasers[J]. Science, 332, 921-922(2011).
[2] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[3] Zervas M N. High power ytterbium-doped fiber lasers:fundamentals and applications[J]. International Journal of Modern Physics B, 28, 1442009(2014).
[4] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).
[5] Hecht J. High-power fiber lasers[J]. Optics and Photonics News, 29, 30-37(2018).
[6] Snitzer E. Optical maser action of Nd3+ in a barium crown glass[J]. Physical Review Letters, 7, 444-446(1961).
[7] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 32, 36-39(1961).
[8] Snitzer E, Po H, Hakimi F et al. Double clad, offset core Nd fiber laser[C], PD5(1988).
[9] Minelly J D, Taylor E R, Jedrzejewski K P et al. Laser-diode-pumped neodymium-doped fiber laser with output power >1 W[C], CWE6(1992).
[10] Po H, Cao J D, Laliberte B M et al. High power neodymium-doped single transverse mode fibre laser[J]. Electronics Letters, 29, 1500-1501(1993).
[11] Zellmer H, Unger S, Albers P et al. High-power CW neodymium-doped fiber laser operating at 92 W with high beam quality[J]. Optics Letters, 20, 578-580(1995).
[12] Dominic V, MacCormack S, Waarts R et al. 110 W fibre laser[J]. Electronics Letters, 35, 1158-1160(1999).
[13] O'Connor M, Gapontsev V, Fomin V et al. Power scaling of SM fiber lasers toward 10 kW[C], CThA3(2009).
[14] Huang Z M, Shu Q, Tao R M et al. >5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).
[15] Luo Y, Zhao P F, You Y F et al. 5.1 kW optically and electronically controlled integrated single mode fiber laser[J]. Chinese Journal of Lasers, 47, 0816001(2020).
[16] Lin H H, Tang X, Li C Y et al. The national single-fiber laser system has obtained 10.6 kW laser output[J]. Chinese Journal of Lasers, 45, 0315001(2018).
[17] Dai J Y, Li F Y, Liu N A et al. Extraction of more than 10 kW from Yb-doped tandem-pumping aluminophosphosilicate fiber[J]. Proceedings of SPIE, 11780, 117801D(2021).
[18] Lin A X, Xiao Q R, Ni L et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 48, 0916003(2021).
[19] Li F Y, Li Y, Song H Q et al. The national optical fiber material devices achieve high SRS rejection ratio of 20.88 kW output[J]. Chinese Journal of Lasers, 48, 2116002(2021).
[20] Yan P, Xiao Q R, Fu C et al. 1.6 kW all-fiber ytterbium-doped laser[J]. Chinese Journal of Lasers, 39, 0416001(2012).
[21] Wang X J, Xiao Q R, Yan P et al. 3000 W direct-pumping all-fiber laser based on domestically produced fiber[J]. Acta Physica Sinica, 64, 164204(2015).
[22] Sun J Y, Yan P, Xiao Q R et al. Research on Raman characteristics of high power fiber lasers[C](2016).
[23] Xiao Q R, Li D, Huang Y S et al. Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser[J]. Laser Physics, 28, 125107(2018).
[24] Wang Z H, Yu W L, Tian J D et al. 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 57, 6800109(2021).
[25] Du S S, Qi T C, Li D et al. 10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS[J]. IEEE Photonics Technology Letters, 34, 721-724(2022).
[26] Lou Q H, He B, Xue Y H et al. 1.75 kW domestic Yb-doped double-clad fiber laser[J]. Chinese Journal of Lasers, 36, 1277(2009).
[27] Dai S J, He B, Zhou J et al. 1.5 kW near single-mode all-fiber laser[J]. Chinese Journal of Lasers, 40, 0702001(2013).
[28] Zhang J P, Chen X L, Bai G et al. Optimization of seed power for suppression of stimulated Raman scatting in all-fiber amplifiers[J]. Laser Physics Letters, 16, 035101(2019).
[29] Chen X L, He Y, Xu Z W et al. Theoretical and experimental investigation of a 10-kW high-efficiency 1070-nm fiber amplifier[J]. Chinese Journal of Lasers, 47, 1006001(2020).
[30] Liu Z J, Leng J Y, Guo S F et al. 2 kW quasi-single-mode fiber laser with all-fiber structure[J]. Chinese Journal of Lasers, 40, 0908003(2013).
[31] Wang X L, Zhang H W, Tao R M et al. Laser diode pumped 4.1 kW all-fiber laser with master oscillator power amplification configuration[J]. Chinese Journal of Lasers, 43, 0502002(2016).
[32] Shi C, Su R T, Zhang H W et al. Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes[J]. IEEE Photonics Journal, 9, 1502910(2017).
[33] Wang P, Yang B L, Zhang H W et al. Single-mode all-fiber laser realizes 6 kW stable operation[J]. Chinese Journal of Lasers, 48, 2416001(2021).
[34] Wang P, Zhang H W, Xi X M et al. 8 kW high beam quality all-fiber laser directly pumped by LD[J]. Chinese Journal of Lasers, 48, 2316004(2021).
[35] Wang P, Xi X M, Zhang H W et al. LD pumped fiber laser amplifier realizes high beam quality output of 13 kW[J]. High Power Laser and Particle Beams, 34, 121001(2022).
[36] Xiao H, Pan Z Y, Chen Z L et al. Stable output of 20 kW high beam quality laser based on self-developed optical fiber and device[J]. Chinese Journal of Lasers, 49, 1616002(2022).
[37] Wang Y, Kitahara R, Kiyoyama W et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[J]. Proceedings of SPIE, 11260, 1126022(2020).
[38] Krämer R G, Möller F, Matzdorf C et al. Extremely robust femtosecond written fiber Bragg gratings for an ytterbium-doped fiber oscillator with 5 kW output power[J]. Optics Letters, 45, 1447-1450(2020).
[39] Yang B L, Zhang H W, Shi C et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme[J]. Optics Express, 24, 27828-27835(2016).
[40] Yang B L, Zhang H W, Ye Q et al. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings[J]. Chinese Optics Letters, 16, 031407(2018).
[41] Yang B L, Shi C, Zhang H W et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters, 15, 075106(2018).
[42] Yang B L, Wang X L, Ye Y et al. The output power of all-fiber laser oscillator exceeds 6 kW[J]. Chinese Journal of Lasers, 47, 0116001(2020).
[43] Xi X M, Wang P, Yang B L et al. The output power of all-fiber laser oscillator exceeds 7 kW[J]. Chinese Journal of Lasers, 48, 0116001(2021).
[44] Wang Y. Dynamics of stimulated Raman scattering in double-clad fiber pulse amplifiers[J]. IEEE Journal of Quantum Electronics, 41, 779-788(2005).
[45] Liu W. Investigation on dynamics of stimulated Raman scattering in high-power fiber lasers[D](2018).
[46] Wang M, Wang Z F, Liu L et al. Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings[J]. Photonics Research, 7, 167-171(2019).
[47] Ippen E P, Shank C V, Gustafson T K. Self-phase modulation of picosecond pulses in optical fibers[J]. Applied Physics Letters, 24, 190-192(1974).
[48] Chen H, Cao J Q, Huang Z H et al. Experimental investigations on TMI and IM-FWM in distributed side-pumped fiber amplifier[J]. IEEE Photonics Journal, 12, 1502413(2020).
[49] Taverner D, Richardson D J, Dong L et al. 158-µJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier[J]. Optics Letters, 22, 378-380(1997).
[50] Lees G P, Taverner D, Richardson D J et al. Q-switched erbium doped fibre laser utilising a novel large mode area fibre[J]. Electronics Letters, 33, 393-394(1997).
[51] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).
[52] Eidam T, Wirth C, Jauregui C et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 19, 13218-13224(2011).
[53] Li Z B, Huang Z H, Xiang X Y et al. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 5, 77-81(2017).
[54] Lapointe M A, Chatigny S, Piché M et al. Thermal effects in high-power CW fiber lasers[J]. Proceedings of SPIE, 7195, 71951U(2009).
[55] Peng X A, Dong L A. Temperature dependence of ytterbium-doped fiber amplifiers[J]. Journal of the Optical Society of America B, 25, 126-130(2007).
[56] Aggarwal R L, Fan T Y. Thermal diffusivity, specific heat, thermal conductivity, coefficient of thermal expansion, and refractive-index change with temperature in AgGaSe2[J]. Applied Optics, 44, 2673-2677(2005).
[57] Tsunekane M, Inohara T, Ando A et al. High peak power, passively Q-switched microlaser for ignition of engines[J]. IEEE Journal of Quantum Electronics, 46, 277-284(2010).
[58] Wang C C. Experimental study of electronic radiation and temperature on the gain of erbium-doped fiber amplifier[D](2011).
[59] Du X Y, Su R T, Wang X L et al. Research on fiber laser performance working at different temperatures[J]. Chinese Journal of Lasers, 42, s102004(2015).
[60] Bai J R, Liu Y, Zhong C Y et al. Narrow pulse width lasers operating over wide range of low temperature[J]. Chinese Journal of Lasers, 46, 0101004(2019).
[61] Goldberg L, Nettleton J, Schilling B et al. Compact laser sources for laser designation, ranging and active imaging[J]. Proceedings of SPIE, 6552, 65520G(2007).
[62] Cheng C, Xin G F, Pi H Y et al. Measurement of thermal relaxation time of high power semiconductor lasers[J]. Chinese Journal of Lasers, 33, 1671-1674(2006).
[63] Zhao Y, Liao Y B. Discrimination methods and demodulation techniques for fiber Bragg grating sensors[J]. Optics and Lasers in Engineering, 41, 1-18(2004).
[64] Liu X S, Hu M H, Caneau C G et al. Thermal management strategies for high power semiconductor pump lasers[J]. IEEE Transactions on Components and Packaging Technologies, 29, 268-276(2006).
[65] Nakwaski W, Osinski M. Thermal properties of etched-well surface-emitting semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 27, 1391-1401(1991).
[66] Gao Q. Theoretical and experimental research on fiber laser performance working at different temperatures[D](2019).
[67] Brown D C, Hoffman H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J]. IEEE Journal of Quantum Electronics, 37, 207-217(2001).
[68] Newell T C, Peterson P, Gavrielides A et al. Temperature effects on the emission properties of Yb-doped optical fibers[J]. Optics Communications, 273, 256-259(2007).
[69] Vazquez-Zuniga L A, Chung S, Jeong Y. Thermal characteristics of an ytterbium-doped fiber amplifier operating at 1060 and 1080 nm[J]. Japanese Journal of Applied Physics, 49, 022502(2010).
[70] Moore S W, Barnett T, Reichardt T A et al. Optical properties of Yb3+-doped fibers and fiber lasers at high temperature[J]. Optics Communications, 284, 5774-5780(2011).
[71] Ilchi-Ghazaani M, Parvin P. Temperature effect on Yb-doped silica fiber laser performance[J]. IEEE Journal of Quantum Electronics, 56, 1600407(2020).
[72] Song Y J, Zong N, Liu K et al. Temperature-dependent thermal and spectroscopic properties of Yb∶YALO3 perovskite crystal for a cryogenically cooled near IR laser[J]. Optical Materials Express, 10, 1522-1530(2020).
[73] Brilliant N A, Lagonik K. Thermal effects in a dual-clad ytterbium fiber laser[J]. Optics Letters, 26, 1669-1671(2001).
[74] Grukh D A, Kurkov A S, Paramonov V M et al. Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers[J]. Quantum Electronics, 34, 579-582(2004).
[75] Kurkov A S, Paramonov V M, Medvedkov O I. Ytterbium fiber laser emitting at 1160 nm[J]. Laser Physics Letters, 3, 503-506(2006).
[76] Steinborn R, Koglbauer A, Bachor P et al. A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm[J]. Optics Express, 21, 22693-22698(2013).
[77] Zhang B, Zhang R L, Xue Y H et al. Temperature dependence of ytterbium-doped tandem-pumped fiber amplifiers[J]. IEEE Photonics Technology Letters, 28, 159-162(2016).
[78] Wu P, Wang Y S, Zhao W et al. Temperature dependence of Yb-doped superfluorescent fiber source[J]. Infrared Physics & Technology, 90, 48-52(2018).
[79] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 20, 11407-11422(2012).
[80] Hansen K R, Alkeskjold T T, Broeng J et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 21, 1944-1971(2013).
[81] Hejaz K, Norouzey A, Poozesh R et al. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 24, 025102(2014).
[82] Tao R M. Study of thermal-induced modal instabilities in high power narrow-linewidth fiber amplifiers with near diffraction-limited beam quality[D](2015).
[83] Wu J M, Gao Q, Zhang H W et al. Experimental demonstration of the influence of cooling temperature on the thermal mode instability in the YB-doped fiber oscillator[J]. IEEE Photonics Journal, 13, 1500205(2021).
[84] Hart T R, Aggarwal R L, Lax B. Temperature dependence of Raman scattering in silicon[J]. Physical Review B, 1, 638-642(1970).
[85] Zheng Y H, Han Z G, Li Y L et al. 3.1 kW 1050 nm narrow linewidth pumping-sharing oscillator-amplifier with an optical signal-to-noise ratio of 45.5 dB[J]. Optics Express, 30, 12670-12683(2022).
[86] McCarthy J C, Young Y E, Day R C et al. Athermal, lightweight, diode-pumped, 1-micron transmitter[J]. Proceedings of SPIE, 5707, 237-243(2005).
[87] Tsunekane M, Taira T. Compact and wide temperature acceptance of VCSEL-pumped micro-laser for laser ignition[C], ATu3A.58(2013).
[88] Lu S W, Meng J, Zhao X Q et al. Temperature insensitive Nd∶GdVO4 laser with high peak power and narrow pulse width[J]. Chinese Journal of Lasers, 45, 0401009(2018).
[89] Lee S T, Silver M, Barron A et al. A compact laser target designator[J]. Proceedings of SPIE, 9834, 98340Q(2016).
[90] Wei D K. Research on temperature insensitive laser technology and single frequency dual pulse hybrid MOPA system[D](2016).
[91] Chen S L, Zhang X, Jiang J et al. VCSEL side-pumped all solid-state laser[J]. Chinese Optics Letters, 45, 1001001(2018).
[92] Qiao Z D, Meng D D, Zhang T L et al. Wide temperature range laser based on conduction-cooled end-pumped slab and crossed-Porro prism resonator[J]. Chinses Optics Letters, 50, 1901006(2023).
[93] Wu J M. Theoretical and experimental research on high power fiber laser performance working at low temperature[D](2021).
Get Citation
Copy Citation Text
Jinming Wu, Fengchang Li, Peng Wang, Hanwei Zhang, Xiaoming Xi, Baolai Yang, Xiaolin Wang, Kai Han, Jinbao Chen. Research Progress on Wide Temperature Operation Fiber Laser[J]. Acta Optica Sinica, 2023, 43(17): 1714003
Category: Lasers and Laser Optics
Received: May. 4, 2023
Accepted: Jun. 19, 2023
Published Online: Sep. 14, 2023
The Author Email: Zhang Hanwei (zhanghanwei100@163.com), Wang Xiaolin (chinawxllin@163.com), Chen Jinbao (kdchenjinbao@aliyun.com)