Journal of Inorganic Materials, Volume. 36, Issue 1, 88(2021)

Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance

Yaxin LIU1,2, Min WANG1,2, Meng SHEN1,2, Qiang WANG1,2, and Lingxia ZHANG1,2、*
Author Affiliations
  • 1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(26)

    [1] CHANG X, WANG T, GONG J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts[D]. Energy & Environmental Science, 9, 2177-2196(2016).

    [2] INDRAKANTI V P, KUBICKI J D, SCHOBERT H H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook[D]. Energy & Environmental Science, 2, 745-750(2009).

    [3] QI Y, SONG L, OUYANG S et al. Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies[D]. Advanced Materials, 32, 1903915(2019).

    [4] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[D]. Nature Materials, 10, 911-921(2011).

    [5] LI J, SONG C F, PANG X J. Controllable synthesis and photocatalytic performance of BiVO4 under visible-light irradiation[D]. Journal of Inorganic Materials, 34, 164-172(2019).

    [6] SUN Y, WANG H, XING Q et al. The pivotal effects of oxygen vacancy on Bi2MoO6: promoted visible light photocatalytic activity and reaction mechanism[D]. Chinese Journal of Catalysis, 40, 647-655(2019).

    [7] WANG M, SHEN M, JIN X et al. Oxygen vacancy generation and stabilization in CeO2-x by Cu introduction with improved CO2 photocatalytic reduction activity[D]. ACS Catalysis, 9, 4573-4581(2019).

    [8] LIU Y, YU S, ZHENG K W et al. NO Photo-oxidation and in-situ DRIFTS studies on N-doped Bi2O2CO3/CdSe quantum dot composite[D]. Journal of Inorganic Materials, 34, 425-432(2019).

    [9] JIANG D, WANG W, GAO E et al. Bismuth-induced integration of solar energy conversion with synergistic low-temperature catalysis in Ce1-xBixO2-δ nanorods[D]. Journal of Physical Chemistry C, 117, 24242-24249(2013).

    [10] SHAMAILA S, SAJJAD A K L, CHEN F et al. Study on highly visible light active Bi2O3 loaded ordered mesoporous titania[D]. Applied Catalysis B Environmental, 94, 272-280(2010).

    [11] YANG G H, MIAO W K, YUAN Z M et al. Bi quantum dots obtained via in situ photodeposition method as a new photocatalytic CO2 reduction cocatalyst instead of noble metals: borrowing redox conversion between Bi2O3 and Bi[D]. Applied Catalysis B Environmental, 237, 302-308(2018).

    [12] GAO Y, LI R, CHEN S et al. Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals[D]. Physical Chemistry Chemical Physics, 17, 31862-31871(2015).

    [13] CHEN D, HE D, LU J et al. Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization[D]. Applied Catalysis B Environmental, 218, 249-259(2017).

    [14] WEBER W H, HASS K C, MCBRIDE J R. Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects[D]. Physical Review B: Condensed Matter, 48, 178-185(1993).

    [15] LI Y F, SOHEILNIA N, GREINER M et al. Pd@HyWO3-x nanowires efficiently catalyze the CO2 heterogeneous reduction reaction with a pronounced light effect[D]. ACS Applied Materials & Interfaces, 11, 5610-5615(2019).

    [16] ZHU S, LI T, CAI W B et al. CO2 Electrochemical reduction as probed through infrared spectroscopy[D]. ACS Energy Letters, 4, 682-689(2019).

    [17] GAMARRA D, FERNANDEZ-GARCIA M, BELVER C et al. Operando DRIFTS and XANES study of deactivating effect of CO2 on a Ce0.8Cu0.2O2[D]. Journal of Physical Chemistry C, 114, 18576-18582(2010).

    [18] WANG Y, ZHAO J, WANG T et al. CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: surface species and their reactivity[D]. Journal of Catalysis, 337, 293-302(2016).

    [19] LI J, ZHANG W, RAN M et al. Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO4: enhanced photocatalysis and reaction mechanism[D]. Applied Catalysis B Environmental, 243, 313-321(2019).

    [20] LI X, ZHANG W, LI J et al. Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3[D]. Applied Catalysis B: Environmental, 241, 187-195(2019).

    [21] RINGE S, MORALES-GUIO C G, CHEN L D et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold[D]. Nature Communications, 11, 33(2020).

    [22] DUNWELL M, LU Q, HEYES J M et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[D]. Journal of the American Chemical Society, 139, 3774-3783(2017).

    [23] ZHU S, JIANG B, CAI W B et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 Electrochemical reduction reaction on Cu surfaces[D]. Journal of the American Chemical Society, 139, 15664-15667(2017).

    [24] WUTTIG A, YOON Y, RYU J et al. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction[D]. Journal of the American Chemical Society, 139, 17109-17113(2017).

    [25] YE L, DENG Y, WANG L et al. Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion[D]. ChemSusChem, 12, 3671-3701(2019).

    [26] GRACIANI J, MUDIYANSELAGE K, XU F et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2[D]. Science, 345, 546-550(2014).

    Tools

    Get Citation

    Copy Citation Text

    Yaxin LIU, Min WANG, Meng SHEN, Qiang WANG, Lingxia ZHANG. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance[J]. Journal of Inorganic Materials, 2021, 36(1): 88

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH LETTERS

    Received: Mar. 20, 2020

    Accepted: --

    Published Online: Jan. 21, 2021

    The Author Email: Lingxia ZHANG (zhlingxia@mail.sic.ac.cn)

    DOI:10.15541/jim20200142

    Topics