Acta Laser Biology Sinica, Volume. 28, Issue 4, 305(2019)
L-Cysteine Modified Fe3O4@TiO2 Composite Nanoparticles for PDT Inactivation of HL60 Cells in vitro
[1] [1] SHRUTIKA M, SNEHAL S G, ASHWINI M, et al. Review:detection of types of acute leukemia[J]. Internation Journal of Computer Science and Mobile Computing, 2014, 3(3): 104-111.
[2] [2] FIDLER M M, SOERJOMATARAM I, BRAY F. A global view on cancer incidence and national levels of the human development index[J]. International Journal of Cancer, 2016, 139(11): 2436-2446.
[3] [3] TURHAN A G. Reversible skin telangiectasia induced by imatinib mesylate in chronic myeloid leukemia.[J]. Leukemia & Lymphoma, 2016, 57(11): 2731-2732.
[4] [4] OCHSNER M. Photophysical and photobiological processes in the photodynamic therapy of tumor[J]. Journal of Photochemistry and Photobiology B: Biology, 1997, 39(1): 1-18.
[5] [5] LIU Huilong, LIU Fan, GU Ying. Several major factors affecting photodynamic therapy[J]. Chinese Journal of Laser Medicine, 2002, 11(2): 121-124.
[6] [6] MATSUNAGA T, TOMODA R, NAKAJIMA T. Photoelectrochemical sterilization of microbial cells by semiconductor powders[J]. FEMS Microbiology Letters, 1985, 29(8): 211-214.
[7] [7] CAI R, KUBOTA Y, SHUIN T. Induction of cytotoxicity by photoexcited TiO2 particles[J]. Cancer Research, 1992, 52(8): 2346-2348.
[8] [8] STEFANOU E, EVANGELOU E, FALARAS P. Effects of UV-irradiated titania nanoparticles on cell proliferation cancer metastasis and promotion[J]. Catalysis Today, 2010, 151(1-2): 58-63.
[9] [9] FENG X, ZHANG S, LOU X. Controlling silica coating thickness on TiO2 nanoparticles for effective photodynamic therapy[J]. Colloids Surface B Biointerfaces, 2013, 107(1): 220-226.
[10] [10] KEITH A C, CHARLES B S, ELI G. PDT:what’s past is prologue[J]. American Association for Cancer Research, 2016, 76(9): 2497-2499.
[11] [11] HE Y, DEL VALLE A, QIAN Y. Near infrared light-mediated enhancement of reactive oxygen species generation through electron transfer from graphene oxide to iron hydroxide/oxide[J]. Nanoscale, 2017, 9(4): 1559-1566.
[12] [12] AI X, HO C J, AW J. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics[J]. Nature Commun, 2016, 7: 10432.
[13] [13] MIN Y, LI J, LIU F. Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. angew[J]. Angewandte Chemie International Edition, 2014, 53(4): 1012-1016.
[14] [14] TIAN B, WANG C, ZHANG S. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide[J]. ACS Nano, 2011, 5(9): 7000-7009.
[15] [15] HUANG P, LIN J, WANG X. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy[J]. Advanced Materials, 2012, 24(37): 5104-5110.
[16] [16] WU Y, LIU Q, XIE Y. Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides[J]. Talanta, 2018, 190(1): 298-312.
[17] [17] MA W, XU L, LI X. Cysteine-functionalized metal-organic framework: facile synthesis and high efficient enrichment of N-linked glycopeptides in cell lysate[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 19562-19568.
[18] [18] YAO J, WANG J, SUN N. One-step functionalization of magnetic nanoparticles with 4-mercaptophenylboronic acid for a highly efficient analysis of N-glycopeptides [J]. Nanoscale, 2017, 9(41): 16024-16029.
[20] [20] GUO Wenbo, LIANG Xueying, FU Qiuwei, et al. An experiment study on inactivation of HL60 cells by the use of visible-light response CdTe/TiO2 composites nanoparticles photody-namic therapy in vitro[J]. Acta Laser Biology Sinica, 2017, 26(1): 13-20.
[21] [21] FU Qiuwei, XUE Ting, XIONG Jianwen, et al. In vitro inactivation of HL60 cells by PDT based on folic acid modified S-TiO2[J]. Acta Laser Biology Sinica, 2017, 26(1): 31-36.
[22] [22] HUANG Mingsheng, CAO Linfeng, XIONG Jianwen, et al. In vitro inactivation of HL60 cells by PDT based on Fe-TiO2 and Ni-TiO2[J]. Acta Laser Biology Sinica, 2018, 27(6): 522-529.
[23] [23] LI Lili, ZHENG Zelin, HUANG Kangqiang, et al. ROS detection in HL60 based on ALA-PDT[J]. Optoelectronics, 2011, 01(2): 11-15.
[24] [24] LI L, ZHAO J F, NAYOUN W, et al. Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer[J]. Nanoscale Research Letters, 2012, 7(1): 386-394.
[25] [25] LI X, LU J, DAI Y, et al. The synthetic effects of iron with sulfur and fluorine on photoabsorption and photocatalytic performance in codoped[J]. International Journal of Photoenergy, 2012, 2012(4): 130-138.
[26] [26] HUANG K, CHEN L, DENG J, et al. Enhanced visible-light photocatalytic performance of nanosized anatase TiO2, doped with CdS quantum dots for cancer-cell treatment[J]. Journal of Nanomaterials, 2012, 2012(1): 4873-4881.
[27] [27] JING L, QU Y, WANG B, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity[J]. Solar Energy Materials & Solar Cells, 2006, 90(12): 1773-1787.
Get Citation
Copy Citation Text
CAO Linfeng, HUANG Mingsheng, CHEN Li, AI Baoquan, XIONG Jianwen. L-Cysteine Modified Fe3O4@TiO2 Composite Nanoparticles for PDT Inactivation of HL60 Cells in vitro[J]. Acta Laser Biology Sinica, 2019, 28(4): 305
Category:
Received: Apr. 12, 2019
Accepted: --
Published Online: Sep. 27, 2019
The Author Email: Jianwen XIONG (jwxiong@scnu.edu.cn)