Acta Laser Biology Sinica, Volume. 30, Issue 5, 385(2021)
Current Situation and Development Trend of Bacteriolytic Therapy of Tumor
[1] [1] RIBAS A, DUMMER R, PUZANOV I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy[J]. Cell, 2017, 170(6): 1109-1119.
[2] [2] CAO Z, LIU J. Bacteria and bacterial derivatives as drug carriers for cancer therapy[J]. Journal of Controlled Release, 2020, 326: 396-407.
[3] [3] LIANG Y, CHEN X, TAO Z, et al. Plasmodium infection prevents recurrence and metastasis of hepatocellular carcinoma possibly via inhibition of the epithelial?mesenchymal transition[J]. Molecular Medicine Reports, 2021, 23(6): 1-19.
[4] [4] DOBOSZ P, DZIECIATKOWSKI T. The intriguing history of cancer immunotherapy[J]. Frontiers in Immunology, 2019, 10: 1-10.
[5] [5] JANKU F, ZHANG H H, PEZESHKI A, et al. Intratumoral injection of Clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors[J]. Clinical Cancer Research, 2021, 27(1): 96-106.
[6] [6] GUO Y, CHEN Y, LIU X, et al. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium[J]. Cancer Letters, 2020, 469: 102-110.
[7] [7] SIVAN A, CORRALES L, HUBERT N, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.
[8] [8] ZHANG Y, JI W, HE L, et al. E. coli nissle 1917-derived minicells for targeted delivery of chemotherapeutic drug to hypoxic regions for cancer therapy[J]. Theranostics, 2018, 8(6): 1690-1705.
[9] [9] DUONG M, QIN Y, YOU S, et al. Bacteria-cancer interactions: bacteria-based cancer therapy[J]. Experimental & Molecular Medicine, 2019, 51(12): 1-15.
[10] [10] LUO Y, XU D, GAO X, et al. Nanoparticles conjugated with bacteria targeting tumors for precision imaging and therapy[J]. Biochemical and Biophysical Research Communications, 2019, 514(4): 1147-1153.
[11] [11] HU Q, WU M, FANG C, et al. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy[J]. Nano Letters, 2015, 15(4): 2732-2739.
[12] [12] LEVENTHAL D S, SOKOLOVSKA A, LI N, et al. Immunotherapy with engineered bacteria by targeting the sting pathway for anti-tumor immunity[J]. Nature Communications, 2020, 11(1): 2739.
[13] [13] SOLOMON B J, DESAI J, ROSENTHAL M, et al. A first-time-in-human phase I clinical trial of bispecific antibody-targeted, paclitaxel-packaged bacterial minicells[J]. PLoS One, 2015, 10(12): e0144559.
[14] [14] SILVESTRI V, HENRIET E, LINVILLE R, et al. A tissue-engineered 3D microvessel model reveals the dynamics of mosaic vessel formation in breast cancer[J]. Cancer Research, 2020, 80(19): 4288-4301.
[15] [15] WEI X, CHEN Y, JIANG X, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments[J]. Molecular Cancer, 2021, 20: 1-18.
[16] [16] WEI M Q, ELLEM K A, DUNN P, et al. Facultative or obligate anaerobic bacteria have the potential for multimodality therapy of solid tumours[J]. European Journal of Cancer, 2007, 43(3): 490-496.
[17] [17] DUFORT C C, DELGIORNO K E, CARLSON M A, et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase[J]. Biophysical Journal, 2016, 110(9): 2106-2119.
[18] [18] FENG X, HE P, ZENG C, et al. Novel insights into the role of Clostridium novyi-NT related combination bacteriolytic therapy in solid tumors[J]. Oncology Letters, 2021, 21(2): 1-7.
[19] [19] DROZDZ M, MAKUCH S, CIENIUCH G, et al. Obligate and facultative anaerobic bacteria in targeted cancer therapy: current strategies and clinical applications[J]. Life Sciences, 2020, 261: 118296-118310.
[20] [20] DANG L H, BETTEGOWDA C, HUSO D L, et al. Combination bacteriolytic therapy for the treatment of experimental tumors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(26): 15155-15160.
[21] [21] PARHI L, ALON M T, SLO A, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression[J]. Nature Communications, 2020, 11(1): 3259-3271.?
[22] [22] CLAIRMONT C, LEE K C, PIKE J, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium[J]. The Journal of Infectious Diseases, 2000, 181(6): 1996-2002.
[23] [23] YU B, YANG M, SHI L, et al. Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella typhimurium strain[J]. Scientific Reports, 2012, 2(436): 1-9.
[24] [24] PARK S H, ZHENG J H, NGUYEN V H, et al. RGD peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated Salmonella-mediated cancer therapy[J]. Theranostics, 2016, 6(10): 1672-1682.
[25] [25] BERETA M, HAYHURST A, GAJDA M, et al. Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies[J]. Vaccine, 2007, 25(21): 4183-4192.
[26] [26] MASSA P E, PANICCIA A, MONEGAL A, et al. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas[J]. Blood, 2013, 122(5): 705-714.
[27] [27] PINERO-LAMBEA C, BODELON G, FERNANDEZ-PERIANEZ R, et al. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins[J]. ACS Synthetic Biology, 2015, 4(4): 463-473.
[28] [28] FLENTIE K, KOCHER B, GAMMON S T, et al. A bioluminescent transposon reporter-trap identifies tumor-specific microenvironment-induced promoters in Salmonella for conditional bacterial-based tumor therapy[J]. Cancer Discovery, 2012, 2(7): 624-637.
[29] [29] ZHAO M, YANG M, LI X M, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(3): 755-760.
[30] [30] FRAHM M, FELGNER S, KOCIJANCIC D, et al. Efficiency of conditionally attenuated Salmonella enterica serovar typhimurium in bacterium-mediated tumor therapy[J]. mBio, 2015, 6(2): 1-11.
[31] [31] BARANI M, BILAL M, SABIR F, et al. Nanotechnology in ovarian cancer: diagnosis and treatment[J]. Life Sciences, 2021, 266: 118914-118926.
[32] [32] LI Y, LIU R, YANG J, et al. Enhanced retention and anti-tumor efficacy of liposomes by changing their cellular uptake and pharmacokinetics behavior[J]. Biomaterials, 2015, 41: 1-14.
[33] [33] SUN T, ZHANG Y S, PANG B, et al. Engineered nanoparticles for drug delivery in cancer therapy[J]. Angewandte Chemie, International Edition in English, 2014, 53(46): 12320-12364.
[34] [34] SINDHWANI S, SYED A M, NGAI J, et al. The entry of nanoparticles into solid tumours[J]. Nature Materials, 2020, 19(5): 566-575.
[35] [35] LUO C H, HUANG C T, SU C H, et al. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy[J]. Nano Letters, 2016, 16(6): 3493-3499.
[36] [36] LIU Y, ZHOU M, LUO D, et al. Bacteria-mediated in vivo delivery of quantum dots into solid tumor[J]. Biochemical and Biophysical Research Communications, 2012, 425(4): 769-774.
[37] [37] GUJRATI V B, JON S. Bioengineered bacterial outer membrane vesicles: what is their potential in cancer therapy?[J]. Nanomedicine, 2014, 9(7): 933-935.
[38] [38] SOMERVILLE J E JR, CASSIANO L, DARVEAU R P. Escherichia coli msbB gene as a virulence factor and a therapeutic target[J]. Infection and Immunity, 1999, 67(12): 6583-6590.
[39] [39] AKIN D, STURGIS J, RAGHEB K, et al. Bacteria-mediated delivery of nanoparticles and cargo into cells[J]. Nature Nanotechnology, 2007, 2(7): 441-449.
[40] [40] GUJRATI V, JON S. Bioengineered bacterial outer membrane vesicles: what is their potential in cancer therapy? [J]. Nanomedicine (Lond), 2014, 9(7): 933-935.
[41] [41] KIM O Y, HONG B S, PARK K S, et al. Immunization with Escherichia coli outer membrane vesicles protects bacteria-induced lethality via TH1 and TH17 cell responses[J]. The Journal of Clinical Investigation, 2013, 190(8): 4092-4102.
[42] [42] ALPHANDERY E. Applications of magnetotactic bacteria and magnetosome for cancer treatment: a review emphasizing on practical and mechanistic aspects[J]. Drug Discovery Today, 2020, 25(8): 1444-1452.
[43] [43] ZHANG Y, NI Q, XU C, et al. Smart bacterial magnetic nanoparticles for tumor-targeting magnetic resonance imaging of HER2-positive breast cancers[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 3654-3665.
[44] [44] ALPHANDERY E, IDBAIH A, ADAM C, et al. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field[J]. Journal of Controlled Release, 2017, 262: 259-272.
[45] [45] FELFOUL O, MOHAMMADI M, TAHERKHANI S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions[J]. Nature Nanotechnology, 2016, 11(11): 941-947.
[46] [46] HOU X, JIANG J, TIAN Z, et al. Autophagy and tumour chemotherapy[J]. Advances in Experimental Medicine and Biology, 2020, 1207: 351-374.
[47] [47] WILSON W R, HAY M P. Targeting hypoxia in cancer therapy[J]. Nature Reviews Cancer, 2011, 11(6): 393-410.
[48] [48] PEREZ-HERRERO E, FERNANDEZ-MEDARDE A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93(2015): 52-79.
[49] [49] NGUYEN V D, HAN J W, CHOI Y J, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella typhimurium)[J]. Sensors and Actuators B: Chemical, 2016, 224(1): 217-224.
[50] [50] EKTATE K, MUNTEANU M C, ASHAR H, et al. Chemo-immunotherapy of colon cancer with focused ultrasound and Salmonella-laden temperature sensitive liposomes (thermobots)[J]. Scientific Reports, 2018, 8(1): 13062.
[51] [51] JIA L J, WEI D P, SUN Q M, et al. Tumor-targeting Salmonella typhimurium improves cyclophosphamide chemotherapy at maximum tolerated dose and low-dose metronomic regimens in a murine melanoma model[J]. International Journal of Cancer, 2007, 121(3): 666-674.
[52] [52] HORSMAN M R, MORTENSEN L S, PETERSEN J B, et al. Imaging hypoxia to improve radiotherapy outcome[J]. Nature Reviews Clinical Oncology, 2012, 9(12): 674-687.
[53] [53] GAO L, ZHENG H, CAI Q, et al. Autophagy and tumour radiotherapy[J]. Advances in Experimental Medicine and Biology, 2020, 1207(1): 375-387.
[54] [54] QUISPE-TINTAYA W, CHANDRA D, JAHANGIR A, et al. Nontoxic radioactive listeria(at) is a highly effective therapy against metastatic pancreatic cancer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8668-8673.
[55] [55] CHANDRA D, SELVANESAN B C, YUAN Z, et al. 32-phosphorus selectively delivered by listeria to pancreatic cancer demonstrates a strong therapeutic effect[J]. Oncotarget, 2017, 8(13): 20729-20740.
[56] [56] HODI F S, CHIARION-SILENI V, GONZALEZ R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (checkmate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial[J]. The Lancet Oncology, 2018, 19(11): 1480-1492.
[57] [57] SIEOW B F, WUN K S, YONG W P, et al. Tweak to treat: reprograming bacteria for cancer treatment[J]. Trends in Cancer, 2021, 7(5): 447-464.
[58] [58] FUNG T C, OLSON C A, HSIAO E Y. Interactions between the microbiota, immune and nervous systems in health and disease[J]. Nature Neuroscience, 2017, 20(2): 145-155.
[59] [59] GARAUDE J, KENT A, VAN ROOIJEN N, et al. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses[J]. Science Translational Medicine, 2012, 4(120): 120ra116.
[60] [60] CHOWDHURY S, CASTRO S, COKER C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity[J]. Nature Medicine, 2019, 25(7): 1057-1063.
[61] [61] ZHANG Y, JI W, HE L, et al.?E. coli?Nissle 1917-derived minicells for targeted delivery of chemotherapeutic drug to hypoxic regions for cancer therapy[J]. Theranostics, 2018, 8(6): 1690-1705.
[62] [62] TOSO J F, GILL V J, HWU P, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma[J]. Journal of Clinical Oncology, 2002, 20(1): 142-152.
[63] [63] CUNNINGHAM C, NEMUNAITIS J. A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: Cl-017. Version: April 9, 2001[J]. Human Gene Therapy, 2001, 12(12): 1594-1596.
[64] [64] BULLMAN S, PEDAMALLU C, SICINAKA E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1448.
[65] [65] KALAORA S, NAGLER A, NEJMAN D, et al. Identification of bacteria-derived HLA-bound peptides in melanoma[J]. Nature, 2021, 592(7852): 138-143.
[66] [66] CAO J, YAN Q. Cancer epigenetics, tumor immunity, and immunotherapy[J]. Trends in Cancer, 2020, 6(7): 580-592.
[67] [67] ZHENG J H, NGUYEN V H, JIANG S N, et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin[J]. Science Translational Medicine, 2017, 9(376): 1-10.
[68] [68] OHTO U, SHIBATA T, TANJI H, et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9[J]. Nature, 2015, 520(7549): 702-705.
Get Citation
Copy Citation Text
FENG Jing, KE Zhangmin, WANG Li, ZHANG Xiuwei, ZHANG Yunlei. Current Situation and Development Trend of Bacteriolytic Therapy of Tumor[J]. Acta Laser Biology Sinica, 2021, 30(5): 385
Category:
Received: Jul. 11, 2021
Accepted: --
Published Online: Nov. 8, 2021
The Author Email: Yunlei ZHANG (yunleizhang@njmu.edu.cn)