Chinese Optics, Volume. 17, Issue 5, 1014(2024)

Research progress of hydroxy-plane laser-induced fluorescence detection based on ultraviolet laser

Zhong-lin ZHANG1, An-long YANG2, Jiang WANG1, and Guang-hua CHENG1、*
Author Affiliations
  • 1School of Artificial Intelligence, Optics and Electronics, Northwestern Polytechnical University, Xi’an 710072, China
  • 2National Key Laboratory of Aerospace Liquid Propulsion, Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
  • show less
    Figures & Tables(19)
    Schematic diagram of planar laser induced fluorescence imaging
    Measurement results of OH/acetone-PLIF/PIV. (a) Mean velocity vectors and (b) instantaneous OH-PLIF image[29]
    Radial diagram of acetone-PLIF in a rotating detonation engine[30]
    Comparison of OH-PLIF and CH-PLIF images in a cavity-stabilized scramjet combustor[33]
    Schematic diagram of experimental set-up for OH measurement of 1-8 atmospheres lean premixed natural gas flames[18]
    Schematic diagram of PLIF-PIV turbulent jet lift flame measurement. (a) Experimental setup; (b) jet burner; (c) imaging region[44]
    High-speed OH-PLIF system with refrequency of 50 kHz[47]
    20 kHz, CH2O -PLIF/PIV experimental setup[48]
    Burst mode experimental setup and measurement results[50]. (a) 7.5 kHz, OH/CH2O-PLIF experimental setup; pluse energy residuals for (b) 355 nm and (c) 283 nm pluse
    Diagram of the 10 kHz biplane PIV and OH-PLIF experimental setups[51]. (a) Layout of experimental optical path; (b) aerial view of light path of the burner
    OPO Ultraviolet laser experimental equipment[52]
    Experimental setup for seed injection of burst-mode OPO UV lasers[53]
    Experimental setup for 50 kHz PLIF based on OPO and frequency doubling method[54]
    Schematic diagram of experimental setup for ultra-high-speed simultaneous OH and CH2O-PLIF[55]
    Schematic of the three-legged burst-mode laser system[56]
    Schematic diagram of the high-speed OH-PLIF experimental setup. (a) MHz pump source optical path[57]; (b) OPO-burst OH-PLIF based rotary burst combustion experimental setup; (c) OPO optical path diagram[58]
    Femtosecond OH-PLIF detector[59]
    OH-PLIF experiment setup with Ti: sapphire. (a) 283 nm UV laser based on titanium gemstone triplex realisation; (b) Bunsen burner detection results[60]
    • Table 1. Performance Comparison of UV Lasers for OH-PLIF

      View table
      View in Article

      Table 1. Performance Comparison of UV Lasers for OH-PLIF

      YearOperation modeRepetition frequencyWavelengthOutput powerPulse energyConversion efficiency
      2007[18]Rhodamine +SHG10 Hz283.92 nm0.06 W6 mJ-
      2007[43]Rhodamine 5G+BBO SHG2.5 kHz5 kHz283 nm130 mW110 mW50 μJ22 μJ0.7%0.6%
      2009[44]Rhodamine 6G+SHG1.5 kHz283 nm0.82 W0.54 mJ1.6%
      2009[45]Rhodamine 6G+BBO SHG5 kHz283.2 nm0.5 W100 μJ2.6%
      2010[46]Rhodamine 6G+BBO SHG10 kHz283.2 nm1.4 W140 μJ3.5%
      2014[47]Rhodamine 6G+2*BBO SHG+MOPA50 kHz283 nm7 W0.14 mJ3.5%
      2018[48]Burst/Rhodamine 6G+SHG20 kHz283 nm1.8 W90 μJ2.8%
      2018[49]Burst/Rhodamine 6G+MOPA+BBO SHG7.5 kHz282.985 nm16.5 W2.2 mJ-
      2018[11]Rhodamine 590+SHG-283 nm-12 mJ-
      2020[51]Dye laser+SHG10 kHz283.9 nm1.6 W0.16 mJ-
      2009[52]Burst/Seeding OPO+BBO SHG-282.97 nm0.2 W--
      2017[53]Burst/Seeding OPO+BBO SFG10 kHz284.005 nm-3 mJ-
      2017[54]Burst/Multi-YAG+OPO+SHG50 kHz283 nm-2 mJ1.25%
      2017[55]Burst/OPO+BBO SHG50 kHz284 nm-350 μJ0.7%
      2018[56]OPO+SFG10 kHz284 nm-5 mJ0.7%
      2020[58]Burst/Seeding OPO+BBO SFG1 MHz284 nm-400 μJ0.6%
      2020[59] fs Ti:sapphire+ BBO THG1 kHz283 nm-90 μJ4.5%
      2023[60]ns Ti:sapphire+LBO SHG+BBO THG1 kHz283 nm0.56 W0.56 mJ2.8%
    Tools

    Get Citation

    Copy Citation Text

    Zhong-lin ZHANG, An-long YANG, Jiang WANG, Guang-hua CHENG. Research progress of hydroxy-plane laser-induced fluorescence detection based on ultraviolet laser[J]. Chinese Optics, 2024, 17(5): 1014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 15, 2024

    Accepted: Mar. 25, 2024

    Published Online: Dec. 31, 2024

    The Author Email:

    DOI:10.37188/CO.2024-0013

    Topics