Acta Optica Sinica, Volume. 44, Issue 2, 0214001(2024)

High-Energy High-Order Harmonic Generation Around 13 nm Wavelength Based on Hundred-Terawatt-Level Laser System

Jixing Gao1,2, Zhiyuan Lou1,2, Fan Yang1,2, Xiaojun Yang1, Yi Xu1,2, Yuxin Leng1,2, Yinghui Zheng3、*, Zhinan Zeng3, and Ruxin Li1,2,3
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Zhangjiang Laboratory, Shanghai 201210, China
  • show less
    References(45)

    [1] Mairesse Y, Bohan A D, Frasinski L J et al. Attosecond synchronization of high-harmonic soft X-rays[J]. Science, 302, 1540-1543(2003).

    [2] Dai C, Wang Y, Miao Z M et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 58, 0300001(2021).

    [3] Labat M, Bellaveglia M, Bougeard M et al. High-gain harmonic-generation free-electron laser seeded by harmonics generated in gas[J]. Physical Review Letters, 107, 224801(2011).

    [4] Zeitoun P, Faivre G, Sebban S et al. A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam[J]. Nature, 431, 426-429(2004).

    [5] Sie E J, Rohwer T, Lee C M et al. Time-resolved XUV ARPES with tunable 24-33 eV laser pulses at 30 meV resolution[J]. Nature Communications, 10, 3535(2019).

    [6] Tanksalvala M, Porter C L, Esashi Y et al. Nondestructive, high-resolution, chemically specific 3D nanostructure characterization using phase-sensitive EUV imaging reflectometry[J]. Science Advances, 7, eabd9667(2021).

    [7] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 21, 843-855(2014).

    [8] Elias L R, Fairbank W M, Madey J M J et al. Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field[J]. Physical Review Letters, 36, 717-720(1976).

    [9] Wang W T, Feng K, Ke L T et al. Free-electron lasing at 27 nanometres based on a laser Wakefield accelerator[J]. Nature, 595, 516-520(2021).

    [10] Qi Z, Huang N S, Deng H X et al. Performance parameters and stability studies on FEL-III beamline of Shanghai high repetition rate XFEL and extreme light facility[J]. Acta Optica Sinica, 42, 1134016(2022).

    [11] Matthews D L, Hagelstein P L, Rosen M D et al. Demonstration of a soft X-ray amplifier[J]. Physical Review Letters, 54, 110-113(1985).

    [12] Key M H. Laboratory production of X-ray lasers[J]. Nature, 316, 314-319(1985).

    [13] Cerjan C. Spectral characterization of a Sn soft X-ray plasma source[J]. Journal of Applied Physics, 76, 3332-3336(1994).

    [14] Ditmire T, Gumbrell E T, Smith R A et al. Spatial coherence measurement of soft X-ray radiation produced by high order harmonic generation[J]. Physical Review Letters, 77, 4756-4759(1996).

    [15] Popmintchev T, Chen M C, Arpin P et al. The attosecond nonlinear optics of bright coherent X-ray generation[J]. Nature Photonics, 4, 822-832(2010).

    [16] Popmintchev D, Hernández-García C, Dollar F et al. Ultraviolet surprise: efficient soft X-ray high-harmonic generation in multiply ionized plasmas[J]. Science, 350, 1225-1231(2015).

    [17] Bartels R A, Paul A, Green H et al. Generation of spatially coherent light at extreme ultraviolet wavelengths[J]. Science, 297, 376-378(2002).

    [18] Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [19] Zhang X, Libertun A R, Paul A et al. Highly coherent light at 13 nm generated by use of quasi-phase-matched high-harmonic generation[J]. Optics Letters, 29, 1357-1359(2004).

    [20] Lewenstein M, Balcou P, Ivanov M Y et al. Theory of high-harmonic generation by low-frequency laser fields[J]. Physical Review A, 49, 2117-2132(1994).

    [21] Milosevic N, Scrinzi A, Brabec T. Numerical characterization of high harmonic attosecond pulses[J]. Physical Review Letters, 88, 093905(2002).

    [22] Takahashi E J, Nabekawa Y, Midorikawa K. Low-divergence coherent soft X-ray source at 13 nm by high-order harmonics[J]. Applied Physics Letters, 84, 4-6(2004).

    [23] Rudawski P, Heyl C M, Brizuela F et al. A high-flux high-order harmonic source[J]. Review of Scientific Instruments, 84, 073103(2013).

    [24] Wang Y, Guo T Y, Li J L et al. Enhanced high-order harmonic generation driven by a wavefront corrected high-energy laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 134005(2018).

    [25] Li J L, Wang Y, Guo T Y et al. Beam optimization in a 25 TW femtosecond laser system for high harmonic generation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 145602(2020).

    [26] Xu Y, Lu J, Li W K et al. A Stable 200 TW/1 Hz Ti: sapphire laser for driving full coherent XFEL[J]. Optics & Laser Technology, 79, 141-145(2016).

    [27] Ranc S, Chériaux G, Ferré S et al. Importance of spatial quality of intense femtosecond pulses[J]. Applied Physics B, 70, S181-S187(2000).

    [28] Zhang L Y, Zheng Y H, Li G C et al. Bright high-order harmonic generation around 30 nm using hundred-terawatt-level laser system for seeding full coherent XFEL[J]. Applied Sciences, 8, 1446(2018).

    [29] Lou Z Y, Zheng Y H, Zhang L Y et al. Bright high harmonic generation around 30 nm and 10 nm for seeding full coherent XFEL[J]. Proceedings of SPIE, 11056, 110562M(2019).

    [30] Wang Z S, Huang Q S, Zhang Z et al. Extreme ultraviolet, X-ray and neutron thin film optical components and systems[J]. Acta Optica Sinica, 41, 0131001(2021).

    [31] Bogachev S A, Chkhalo N I, Kuzin S V et al. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy[J]. Applied Optics, 55, 2126-2135(2016).

    [32] Ichimaru S, Hatayama M, Ohchi T et al. Mo/Si multilayer mirrors with 300-bilayers for EUV lithography[J]. Proceedings of SPIE, 9658, 965814(2015).

    [33] Ii O W, Wong K, Parks V et al. Improved Ru/Si multilayer reflective coatings for advanced extreme-ultraviolet lithography photomasks[J]. Proceedings of SPIE, 9776, 977619(2016).

    [34] Constant E, Garzella D, Breger P et al. Optimizing high harmonic generation in absorbing gases: model and experiment[J]. Physical Review Letters, 82, 1668-1671(1999).

    [35] Takahashi E J, Nabekawa Y, Mashiko H et al. Generation of strong optical field in soft X-ray region by using high-order harmonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 1315-1328(2004).

    [36] Henke B L, Gullikson E M, Davis J C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30,000 eV, Z=1-92[J]. Atomic Data and Nuclear Data Tables, 54, 181-342(1993).

    [37] Hernández-García C, Sola I J, Plaja L. Signature of the transversal coherence length in high-order harmonic generation[J]. Physical Review A, 88, 043848(2013).

    [38] Durfee C G, Rundquist A R, Backus S et al. Phase matching of high-order harmonics in hollow waveguides[J]. Physical Review Letters, 83, 2187-2190(1999).

    [39] Takahashi E, Nabekawa Y, Midorikawa K. Generation of 10-µJ coherent extreme-ultraviolet light by use of high-order harmonics[J]. Optics Letters, 27, 1920-1922(2002).

    [40] Takahashi E, Tosa V, Nabekawa Y et al. Experimental and theoretical analyses of a correlation between pump-pulse propagation and harmonic yield in a long-interaction medium[J]. Physical Review A, 68, 023808(2003).

    [42] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994-1997(1993).

    [43] Salières P, L'Huillier A, Lewenstein M. Coherence control of high-order harmonics[J]. Physical Review Letters, 74, 3776-3779(1995).

    [44] He X K, Miranda M, Schwenke J et al. Spatial and spectral properties of the high-order harmonic emission in argon for seeding applications[J]. Physical Review A, 79, 063829(2009).

    [45] Hu Y W, Liu X, Kuang C F et al. Research progress and prospect of adaptive optics based on deep learning[J]. Chinese Journal of Lasers, 50, 1101009(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jixing Gao, Zhiyuan Lou, Fan Yang, Xiaojun Yang, Yi Xu, Yuxin Leng, Yinghui Zheng, Zhinan Zeng, Ruxin Li. High-Energy High-Order Harmonic Generation Around 13 nm Wavelength Based on Hundred-Terawatt-Level Laser System[J]. Acta Optica Sinica, 2024, 44(2): 0214001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Aug. 29, 2023

    Accepted: Oct. 21, 2023

    Published Online: Jan. 11, 2024

    The Author Email: Zheng Yinghui (zhengyh@zjlab.ac.cn)

    DOI:10.3788/AOS231482

    Topics