Remote Sensing Technology and Application, Volume. 40, Issue 4, 1015(2025)
Brief Review on the Progress in Fine-scale Acquisition of Forest Parameters based on Near-ground Remote Sensing
[1] [1] BARBIER N, COUTERON P, PROISY C,et al. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests[J]. Global Ecology and Biogeography, 2010, 19(1): 72-84. DOI: 10.1111/j.1466-8238. 2009.00493.x
[2] [2] WANG Q, PANG Y, CHEN D S,et al. Lidar biomass index: A novel solution for tree-level biomass estimation using 3D crown information[J]. Forest Ecology and Management, 2021, 499: 119542. DOI: 10.1016/j.foreco.2021.119542
[3] [3] CHAI G Q, ZHENG Y F, LEI L T,et al. A novel solution for extracting individual tree crown parameters in high-density plantation considering inter-tree growth competition using terrestrial close-range scanning and photogrammetry technology[J]. Computers and Electronics in Agriculture, 2023, 209: 107849. DOI: 10.1016/j.compag.2023.107849
[4] [4] ODURO APPIAH J, OPIO C, DONNELLY S. Measuring forest change patterns from oil and gas land use dynamics in northeastern British Columbia, 1975 to 2017[J]. Environmental Monitoring and Assessment, 2019, 192(1): 24. DOI: 10.1007/s10661-019-7958-2
[5] [5] XIANG B B, WIELGOSZ M, KONTOGIANNI T,et al. Automated forest inventory: Analysis of high-density airborne LiDAR point clouds with 3D deep learning[J]. Remote Sensing of Environment, 2024, 305: 114078. DOI: 10.1016/j.rse.2024.114078
[6] [6] WAGNER F H, FERREIRA M P, SANCHEZ A,et al. Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 362-377. DOI: 10.1016/j.isprsjprs.2018.09.013
[7] [7] XU X J, ZHOU Z S, TANG Y,et al. Individual tree crown detection from high spatial resolution imagery using a revised local maximum filtering[J]. Remote Sensing of Environment, 2021, 258: 112397. DOI: 10.1016/j.rse.2021.112397
[8] [8] ZHU R N, CHEN L, CHAI G Q,et al. Integrating extraction framework and methods of individual tree parameters based on close-range photogrammetry[J]. Computers and Electronics in Agriculture, 2023, 215: 108411. DOI: 10.1016/j.compag.2023.108411
[9] [9] GRAY A N, MCINTOSH A C S, GARMAN S L,et al. Predicting canopy cover of diverse forest types from individual tree measurements[J]. Forest Ecology and Management, 2021, 501: 119682. DOI: 10.1016/j.foreco.2021.119682
[10] [10] WANG Y S, LEHTOMKI M, LIANG X L,et al. Is field-measured tree height as reliable as believed-A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147: 132-145. DOI: 10.1016/j.isprsjprs.2018.11.008
[11] [11] JURJEVI L, LIANG X L, GAPAROVI M,et al. Is field-measured tree height as reliable as believed-Part II, A comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 227-241. DOI: 10.1016/j.isprsjprs.2020.09.014
[12] [12] LARJAVAARA M, MULLER-LANDAU H C. Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest[J]. Methods in Ecology and Evolution, 2013, 4(9): 793-801. DOI: 10.1111/2041-210X.12071
[17] [17] GOMES M F, MAILLARD P, DENG H W. Individual tree crown detection in sub-meter satellite imagery using Marked Point Processes and a geometrical-optical model[J]. Remote Sensing of Environment, 2018, 211: 184-195. DOI: 10.1016/j.rse.2018.04.002
[18] [18] YUN T, JIANG K, LI G C,et al. Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach[J]. Remote Sensing of Environment, 2021, 256: 112307. DOI: 10.1016/j.rse.2021.112307
[21] [21] YIN T, ZENG J, ZHANG X L,et al. Individual tree parameters estimation for Chinese fir (Cunninghamia lanceolate(lamb.) hook) plantations of South China using UAV oblique photography: Possibilities and challenges[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 827-842.
[23] [23] LEI L T, YIN T, CHAI G Q,et al. A novel algorithm of individual tree crowns segmentation considering three-dimensional canopy attributes using UAV oblique photos[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102893. DOI: 10.1016/j.jag.2022.102893
[24] [24] LI Y B, CHAI G Q, WANG Y T,et al. ACE R-CNN: An attention complementary and edge detection-based instance segmentation algorithm for individual tree species identification using UAV RGB images and LiDAR data[J]. Remote Sensing, 2022, 14(13): 3035. DOI: 10.3390/rs14133035
[25] [25] YAO Z Q, CHAI G Q, LEI L T,et al. Individual tree species identification and crown parameters extraction based on mask R-CNN: Assessing the applicability of unmanned aerial vehicle optical images[J]. Remote Sensing, 2023, 15(21): 5164. DOI: 10.3390/rs15215164
[26] [26] HU L L, XU X J, WANG J Z,et al. Individual tree crown width detection from unmanned aerial vehicle images using a revised local transect method[J]. Ecological Informatics, 2023, 75: 102086. DOI: 10.1016/j.ecoinf.2023.102086
[27] [27] HUO L N, LINDBERG E, HOLMGREN J. Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD)[J]. Remote Sensing of Environment, 2022, 270: 112857. DOI: 10.1016/j.rse.2021.112857
[28] [28] HUO L N, ZHANG N, ZHANG X L,et al. Tree defoliation classification based on point distribution features derived from single-scan terrestrial laser scanning data[J]. Ecological Indicators, 2019, 103: 782-790. DOI: 10.1016/j.ecolind. 2019.03.036
[29] [29] HUO L N, ZHANG X L. A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 302-312. DOI: 10.1016/j.isprsjprs.2019.03.018
[31] [31] JASKIERNIAK D, LUCIEER A, KUCZERA G,et al. Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 171-187. DOI: 10.1016/j.isprsjprs.2020.10.016
[33] [33] LIANG X L, HYYPP J, KAARTINEN H,et al. International benchmarking of terrestrial laser scanning approaches for forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 137-179. DOI: 10.1016/j.isprsjprs.2018.06.021
[34] [34] KHOSRAVIPOUR A, SKIDMORE A K, WANG T J,et al. Effect of slope on treetop detection using a LiDAR Canopy Height Model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 44-52. DOI: 10.1016/j.isprsjprs.2015.02.013
[37] [37] LEI L T, CHAI G Q, WANG Y T,et al. Estimating individual tree above-ground biomass of Chinese fir plantation: Exploring the combination of multi-dimensional features from UAV oblique photos[J]. Remote Sensing, 2022, 14(3): 504. DOI: 10.3390/rs14030504
[38] [38] ZHOU X M, ZHANG X L. Individual tree parameters estimation for plantation forests based on UAV oblique photography[J]. IEEE Access, 2020, 8: 96184-96198.
[40] [40] LIANG X L, KUKKO A, BALENOVI I,et al. Closerange remote sensing of forests: The state of the art, challenges, and opportunities for systems and data acquisitions[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(3): 32-71. DOI: 10.1109/MGRS.2022.3168135
[41] [41] ANDERSON C T, DIETZ S L, POKSWINSKI S M,et al. Traditional field metrics and terrestrial LiDAR predict plant richness in southern pine forests[J]. Forest Ecology and Management, 2021, 491: 119118. DOI: 10.1016/j.foreco. 2021.119118
[42] [42] OLOFSSON K, HOLMGREN J. Single tree stem profile detection using terrestrial laser scanner data, flatness saliency features and curvature properties[J]. Forests, 2016, 7(9): 207. DOI: 10.3390/f7090207
[43] [43] HEINZEL J, HUBER M O. Detecting tree stems from volumetric TLS data in forest environments with rich understory[J]. Remote Sensing, 2017, 9(1): 9. DOI: 10.3390/rs9010009
[44] [44] GOLLOB C, RITTER T, WASSERMANN C,et al. Influence of scanner position and plot size on the accuracy of tree detection and diameter estimation using terrestrial laser scanning on forest inventory plots[J]. Remote Sensing, 2019, 11(13): 1602. DOI: 10.3390/rs11131602
[45] [45] MOKRO M, MIKITA T, SINGH A,et al. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102512. DOI: 10.1016/j.jag.2021.102512
[46] [46] FAN Y X, FENG Z K, SHEN C Y,et al. A trunk-based SLAM backend for smartphones with online SLAM in largescale forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 41-49. DOI: 10.1016/j.isprsjprs.2020.02.006
[47] [47] FOL C R, KKENBRINK D, REHUSH N,et al. Evaluating state-of-the-art 3D scanning methods for stem-level biodiversity inventories in forests[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122: 103396. DOI: 10.1016/j.jag.2023.103396
[48] [48] HYYPP E, YU X W, KAARTINEN H,et al. Comparison of backpack, handheld, under-canopy UAV, and abovecanopy UAV laser scanning for field reference data collection in boreal forests[J]. Remote Sensing, 2020, 12(20): 3327. DOI: 10.3390/rs12203327
[49] [49] KKENBRINK D, MARTY M, BSCH R,et al. Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102999. DOI: 10.1016/j.jag.2022.102999
[50] [50] LI J P, YANG B S, YANG Y D,et al. Real-time automated forest field inventory using a compact low-cost helmet-based laser scanning system[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103299. DOI: 10.1016/j.jag.2023.103299
[51] [51] JIANG T P, LIU S, ZHANG Q Y,et al. Segmentation of individual trees in urban MLS point clouds using a deep learning framework based on cylindrical convolution network[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 123: 103473. DOI: 10.1016/j.jag.2023.103473
[52] [52] PROUDMAN A, RAMEZANI M, DIGUMARTI S T,et al. Towards real-time forest inventory using handheld LiDAR[J]. Robotics and Autonomous Systems, 2022, 157: 104240. DOI: 10.1016/j.robot.2022.104240
[53] [53] VATANDALAR C, SEKI M, ZEYBEK M. Assessing the potential of mobile laser scanning for stand-level forest inventories in near-natural forestsFree[J]. Forestry: an International Journal of Forest Research, 2023, 96(4): 448-464. DOI: 10.1093/forestry/cpad016
[54] [54] MIKITA T, JANATA P, SUROV P. Forest stand inventory based on combined aerial and terrestrial close-range photogrammetry[J]. Forests, 2016, 7(8): 165. DOI: 10.3390/f7080165
[55] [55] ZHU R N, GUO Z Q, ZHANG X L. Forest 3D reconstruction and individual tree parameter extraction combining closerange photo enhancement and feature matching[J]. Remote Sensing, 2021, 13(9): 1633. DOI: 10.3390/rs13091633
[56] [56] SUROV P, YOSHIMOTO A, PANAGIOTIDIS D. Accuracy of reconstruction of the tree stem surface using terrestrial close-range photogrammetry[J]. Remote Sensing, 2016, 8(2): 123. DOI: 10.3390/rs8020123
[57] [57] YAN X H, CHAI G Q, HAN X Y,et al. SA-pmnet: Utilizing close-range photogrammetry combined with image enhancement and self-attention mechanisms for 3D reconstruction of forests[J]. Remote Sensing, 2024, 16(2): 416. DOI: 10.3390/rs16020416
[58] [58] REN Y, LI C, CHAU K,et al. Conserving the primary forests in the Yarlung Tsangpo Grand Canyon for people and nature[J]. Nature Ecology & Evolution, 2024, 8(5): 837-839. DOI: 10.1038/s41559-024-02383-y
[59] [59] ASNER G P, MASCARO J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric[J]. Remote Sensing of Environment, 2014, 140: 614-624. DOI: 10.1016/j.rse.2013.09.023
[60] [60] LIANG X L, QI H W, DENG X J,et al. ForestSemantic: A dataset for semantic learning of forest from close-range sensing[J]. Geo-spatial Information Science, 2025, 28(1): 185-211. DOI: 10.1080/10095020.2024.2313325
[61] [61] WANG L, GONG P, BIGING G S. Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(3): 351-357. DOI: 10.14358/pers.70.3.351
[62] [62] ENE L, NSSET E, GOBAKKEN T. Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates[J]. International Journal of Remote Sensing, 2012, 33(16): 5171-5193. DOI: 10.1080/01431161.2012.657363
[63] [63] GOUGEON F A. A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images[J]. Canadian Journal of Remote Sensing, 1995, 21(3): 274-284. DOI: 10.1080/07038992. 1995.10874622
[64] [64] KOCH B, HEYDER U, WEINACKER H. Detection of individual tree crowns in airborne lidar data[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(4): 357-363. DOI: 10.14358/pers.72.4.357
[65] [65] LIU Q, JING L, LI Y,et al. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition[J]. IOP Conference Series: Earth and Environmental Science, 2016, 34(1): 012020. DOI: 10.1088/1755-1315/34/1/012020
[66] [66] HUO L N, LINDBERG E. Individual tree detection using template matching of multiple rasters derived from multispectral airborne laser scanning data[J]. International Journal of Remote Sensing, 2020, 41(24): 9525-9544. DOI: 10.1080/01431161.2020.1800127
[67] [67] CHEN X, SHEN X J, ZHANG X Z,et al. Polygenic associations and causal inferences between serum immunoglobulins and amyotrophic lateral sclerosis[J]. Clinica Chimica Acta, 2021, 521: 131-136. DOI: 10.1016/j.cca.2021.07.007
[68] [68] YUN T, LI J, MA L F,et al. Status, advancements and prospects of deep learning methods applied in forest studies[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 131: 103938. DOI: 10.1016/j.jag.2024.103938
[69] [69] LINDBERG E, HOLMGREN J, OLOFSSON K,et al. Estimation of tree lists from airborne laser scanning using tree model clustering and k-MSN imputation[J]. Remote Sensing, 2013, 5(4): 1932-1955. DOI: 10.3390/rs5041932
[70] [70] HU X B, CHEN W, XU W Y. Adaptive mean shift-based identification of individual trees using airborne LiDAR data[J]. Remote Sensing, 2017, 9(2): 148. DOI: 10.3390/rs 9020148
[71] [71] WANG Y S, WEINACKER H, KOCH B. A lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest[J]. Sensors, 2008, 8(6): 3938-3951. DOI: 10.3390/s8063938
[72] [72] WANG C X, JI M, WANG J,et al. An improved DBSCAN method for LiDAR data segmentation with automatic eps estimation[J]. Sensors, 2019, 19(1): 172. DOI: 10.3390/s19010172
[73] [73] SHENDRYK I, BROICH M, TULBURE M G,et al. Bottom-up delineation of individual trees from full-waveform airborne laser scans in a structurally complex eucalypt forest[J]. Remote Sensing of Environment, 2016, 173: 69-83. DOI: 10.1016/j.rse.2015.11.008
[74] [74] KAARTINEN H, HYYPP J, YU X W,et al. An international comparison of individual tree detection and extraction using airborne laser scanning[J]. Remote Sensing, 2012, 4(4): 950-974. DOI: 10.3390/rs4040950
[75] [75] WALLACE L, LUCIEER A, MALENOVSK Z,et al. Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and Structure from Motion(SfM) point clouds[J]. Forests, 2016, 7(3): 62. DOI: 10.3390/f7030062
[76] [76] LIANG X L, KANKARE V, HYYPP J,et al. Terrestrial laser scanning in forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 63-77. DOI: 10.1016/j.isprsjprs.2016.01.006
[77] [77] ZHONG L S, CHENG L, XU H,et al. Segmentation of individual trees from TLS and MLS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(2): 774-787. DOI: 10.1109/JSTARS.2016.2565519
[78] [78] BURT A, DISNEY M, CALDERS K. Extracting individual trees from Lidar point clouds using treeseg[J]. Methods in Ecology and Evolution, 2019, 10(3): 438-445. DOI: 10.1111/2041-210X.13121
[79] [79] LUO H F, KHOSHELHAM K, CHEN C C,et al. Individual tree extraction from urban mobile laser scanning point clouds using deep pointwise direction embedding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 326-339. DOI: 10.1016/j.isprsjprs.2021.03.002
[80] [80] CHIAPPINI S, PIERDICCA R, MALANDRA F,et al. Comparing Mobile Laser Scanner and manual measurements for dendrometric variables estimation in a black pine (Pinus nigra Arn.) plantation[J]. Computers and Electronics in Agriculture, 2022, 198: 107069. DOI: 10.1016/j.compag. 2022.107069
[81] [81] GOLLOB C, RITTER T, NOTHDURFT A. Forest inventory with long range and high-speed Personal Laser Scanning(PLS) and Simultaneous Localization And Mapping (SLAM) technology[J]. Remote Sensing, 2020, 12(9): 1509. DOI: 10.3390/rs12091509
[82] [82] KUELKA K, MARUK R, SUROV P. Inventory of close-to-nature forest stands using terrestrial mobile laser scanning[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 115: 103104. DOI: 10.1016/j.jag.2022.103104
[83] [83] CHE Y P, WANG Q, XIE Z W,et al. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography Free[J]. Annals of Botany, 2020, 126(4): 765-773. DOI: 10.1093/aob/mcaa097
[86] [86] LEI L T, CHAI G Q, YAO Z Q,et al. A novel self-similarity cluster grouping approach for individual tree crown segmentation using multi-features from UAV-based LiDAR and multi-angle photogrammetry data[J]. Remote Sensing of Environment, 2025, 318: 114588. DOI: 10.1016/j.rse. 2024.114588
[87] [87] MILLER J, MORGENROTH J, GOMEZ C. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates[J]. Urban Forestry &Urban Greening, 2015, 14(4): 932-940. DOI: 10.1016/j.ufug.2015.09.001
[88] [88] LIU J C, FENG Z K, YANG L Y,et al. Extraction of sample plot parameters from 3D point cloud reconstruction based on combined RTK and CCD continuous photography[J]. Remote Sensing, 2018, 10(8): 1299. DOI: 10.3390/rs10081299
[89] [89] LIANG X L, JAAKKOLA A, WANG Y S,et al. The use of a hand-held camera for individual tree 3D mapping in forest sample plots[J]. Remote Sensing, 2014, 6(7): 6587-6603. DOI: 10.3390/rs6076587
[90] [90] LI Y X, WANG P, SUN J Q,et al. Simulation of tree point cloud based on the ray-tracing algorithm and three-dimensional tree model[J]. Biosystems Engineering, 2020, 200: 259-271. DOI: 10.1016/j.biosystemseng.2020.10.007
[91] [91] YUN T, CAO L, AN F,et al. Simulation of multi-platform LiDAR for assessing total leaf area in tree crowns[J]. Agricultural and Forest Meteorology, 2019, 276: 107610. DOI: 10.1016/j.agrformet.2019.06.009
[92] [92] LI W K, HU X M, SU Y J,et al. A new method for voxel-based modelling of three-dimensional forest scenes with integration of terrestrial and airborne LiDAR data[J]. Methods in Ecology and Evolution, 2024, 15(3): 569-582. DOI: 10.1111/2041-210X.14290
[93] [93] WESTLING F, BRYSON M, UNDERWOOD J. Sim-TreeLS: Simulating aerial and terrestrial laser scans of trees[J]. Computers and Electronics in Agriculture, 2021, 187: 106277. DOI: 10.1016/j.compag.2021.106277
[94] [94] BAZEZEW M N, HUSSIN Y A, KLOOSTERMAN E H. Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 638-652. DOI: 10.1016/j.jag.2018.07.026
[95] [95] FEKRY R, YAO W, CAO L,et al. Ground-based/UAVLiDAR data fusion for quantitative structure modeling and tree parameter retrieval in subtropical planted forest[J]. Forest Ecosystems, 2022, 9: 100065. DOI: 10.1016/j.fecs. 2022.100065
[96] [96] CHEN C, WANG H D, WANG D C,et al. Towards the digital twin of urban forest: 3D modeling and parameterization of large-scale urban trees from close-range laser scanning[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 127: 103695. DOI: 10.1016/j.jag. 2024.103695
[97] [97] YANG Y Q, HUANG S. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research, 2018, 137(2): 153-167. DOI: 10.1007/s10342-017-1095-7
Get Citation
Copy Citation Text
CHAI Guoqi, YANG Yanchen, WANG Lei, MA Yong, TIAN Xin. Brief Review on the Progress in Fine-scale Acquisition of Forest Parameters based on Near-ground Remote Sensing[J]. Remote Sensing Technology and Application, 2025, 40(4): 1015
Received: Feb. 10, 2025
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: TIAN Xin (tianxin@caf.ac.cn)