Remote Sensing Technology and Application, Volume. 40, Issue 4, 1015(2025)

Brief Review on the Progress in Fine-scale Acquisition of Forest Parameters based on Near-ground Remote Sensing

Guoqi CHAI1, Yanchen YANG1, Lei WANG2, Yong MA3, and Xin TIAN1、*
Author Affiliations
  • 1Institute of Forest Resource Information Techniques, Chinese Academy of Forestry,Beijing100091, China
  • 2China Science and Technology Exchange Center, Beijing100045, China
  • 3Key Laboratory of Earth Observation of Hainan Province, Hainan Research Institute, Aerospace Information Research Institute, Chinese Academy of Sciences, Sanya572029, China
  • show less
    References(97)

    [1] [1] BARBIERN, COUTERONP, PROISYC, et al. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests[J]. Global Ecology and Biogeography,2010,19(1):72-84. DOI:10.1111/j.1466-8238. 2009. 00493.x

    [2] [2] WANGQ, PANGY, CHEND S, et al. Lidar biomass index: A novel solution for tree-level biomass estimation using 3D crown information[J]. Forest Ecology and Management, 2021, 499: 119542. DOI: 10.1016/j.foreco.2021.119542

    [3] [3] CHAIG Q, ZHENGY F, LEIL T, et al. A novel solution for extracting individual tree crown parameters in high-density plantation considering inter-tree growth competition using terrestrial close-range scanning and photogrammetry technology[J]. Computers and Electronics in Agriculture, 2023, 209: 107849. DOI: 10.1016/j.compag.2023.107849

    [4] [4] ODURO APPIAHJ, OPIOC, DONNELLYS. Measuring forest change patterns from oil and gas land use dynamics in northeastern British Columbia, 1975 to 2017[J]. Environmental Monitoring and Assessment, 2019, 192(1): 24. DOI: 10.1007/s10661-019-7958-2

    [5] [5] XIANGB B, WIELGOSZM, KONTOGIANNIT, et al. Automated forest inventory: Analysis of high-density airborne LiDAR point clouds with 3D deep learning[J]. Remote Sensing of Environment,2024,305:114078. DOI:10.1016/j.rse. 2024.114078

    [6] [6] WAGNERF H, FERREIRAM P, SANCHEZA, et al. Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 362-377. DOI: 10.1016/j.isprsjprs.2018.09.013

    [7] [7] XUX J, ZHOUZ S, TANGY, et al. Individual tree crown detection from high spatial resolution imagery using a revised local maximum filtering[J]. Remote Sensing of Environment, 2021, 258: 112397. DOI: 10.1016/j.rse.2021.112397

    [8] [8] ZHUR N, CHENL, CHAIG Q, et al. Integrating extraction framework and methods of individual tree parameters based on close-range photogrammetry[J]. Computers and Electronics in Agriculture,2023,215:108411. DOI:10.1016/j.compag.2023.108411

    [9] [9] GRAYA N, MCINTOSHA C S, GARMANS L, et al. Predicting canopy cover of diverse forest types from individual tree measurements[J]. Forest Ecology and Management, 2021, 501: 119682. DOI: 10.1016/j.foreco.2021.119682

    [10] [10] WANGY S, LEHTOMÄKIM, LIANGX L, et al. Is field-measured tree height as reliable as believed-A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019,147:132-145. DOI:10.1016/j.isprsjprs.2018. 11.008

    [11] [11] JURJEVIĆL, LIANGX L, GAŠPAROVIĆM, et al. Is field-measured tree height as reliable as believed–Part II, A comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 227-241. DOI: 10.1016/j.isprsjprs.2020.09.014

    [12] [12] LARJAVAARAM, MULLER-LANDAUH C. Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest[J]. Methods in Ecology and Evolution,2013,4(9):793-801. DOI:10.1111/2041-210X. 12071

    [13] [13] LIUCheng, CHENHuochun, XUZhiyang, et al. Enlightenment of global forest resources assessment to forest resources monitoring in China[J]. Forest Inventory and Planning, 2020, 45(6): 1-5.

    [14] [14] ZHONGLi, CHENYunzhi, WANGXiaoqin. Forest disturbance monitoring based on time series of Landsat data[J]. Scientia Silvae Sinicae, 2020, 56(5): 80-88.

    [15] [15] ZHOUKai, CAOLin. The status and prospects of remote sensing applications in precision silviculture[J]. National Remote Sensing Bulletin, 2021, 25(1): 423-438.

    [16] [16] HUANGHuaguo. Progress and perspective of quantitative remote sensing of forestry[J]. Journal of Beijing Forestry University, 2019, 41(12): 1-14.

    [17] [17] GOMESM F, MAILLARDP, DENGH W. Individual tree crown detection in sub-meter satellite imagery using Marked Point Processes and a geometrical-optical model[J]. Remote Sensing of Environment,2018,211:184-195. DOI:10.1016/j.rse.2018.04.002

    [18] [18] YUNT, JIANGK, LIG C, et al. Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach[J]. Remote Sensing of Environment,2021,256:112307. DOI:10. 1016/j.rse.2021.112307

    [19] [19] LIYumei, GUOQinghua, WANBo, et al. Current status and prospect of three-dimensional dynamic monitoring of natural resources based on LiDAR[J]. National Remote Sensing Bulletin, 2021, 25(1): 381-402.

    [20] [20] GUOQinghua, HUTianyu, LIUJin, et al. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications[J]. Progress in Geography, 2021, 40(9): 1550-1569.

    [21] [21] YINT, ZENGJ, ZHANGX L, et al. Individual tree parameters estimation for Chinese fir (Cunninghamia lanceolate (lamb.) hook) plantations of South China using UAV oblique photography: Possibilities and challenges[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 827-842.

    [22] [22] LIZengyuan, GAOZhihai, ZHANGYuxing, et al. Design and application of high-resolution remote sensing forestry application technology and service platform[J]. Satellite Application, 2023(11): 8-13.

    [23] [23] LEIL T, YINT, CHAIG Q, et al. A novel algorithm of individual tree crowns segmentation considering three-dimensional canopy attributes using UAV oblique photos[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102893. DOI: 10.1016/j.jag.2022.102893

    [24] [24] LIY B, CHAIG Q, WANGY T, et al. ACE R-CNN: An attention complementary and edge detection-based instance segmentation algorithm for individual tree species identification using UAV RGB images and LiDAR data[J]. Remote Sensing, 2022, 14(13): 3035. DOI: 10.3390/rs14133035

    [25] [25] YAOZ Q, CHAIG Q, LEIL T, et al. Individual tree species identification and crown parameters extraction based on mask R-CNN: Assessing the applicability of unmanned aerial vehicle optical images[J]. Remote Sensing, 2023, 15(21): 5164. DOI: 10.3390/rs15215164

    [26] [26] HUL L, XUX J, WANGJ Z, et al. Individual tree crown width detection from unmanned aerial vehicle images using a revised local transect method[J]. Ecological Informatics, 2023, 75: 102086. DOI: 10.1016/j.ecoinf.2023.102086

    [27] [27] HUOL N, LINDBERGE, HOLMGRENJ. Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD)[J]. Remote Sensing of Environment, 2022, 270: 112857. DOI: 10.1016/j.rse.2021.112857

    [28] [28] HUOL N, ZHANGN, ZHANGX L, et al. Tree defoliation classification based on point distribution features derived from single-scan terrestrial laser scanning data[J]. Ecological Indicators,2019,103:782-790. DOI:10.1016/j.ecolind. 2019. 03.036

    [29] [29] HUOL N, ZHANGX L. A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 302-312. DOI: 10.1016/j.isprsjprs.2019.03.018

    [30] [30] MAZhenyu, PANGYong, LIZengyuan, et al. Fine classification of near-ground point cloud based on terrestrial laser scanning and detection of forest fallen wood[J]. Journal of Remote Sensing, 2019, 23(4): 743-755.

    [31] [31] JASKIERNIAKD, LUCIEERA, KUCZERAG, et al. Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,171:171-187. DOI:10.1016/j.isprsjprs.2020.10.016

    [32] [32] GAOLinghan, ZHANGXiaoli, CHENYuanyuan. Estimation of individual tree parameters of plantation economic forest in Hainan Boao based on airborne LiDAR point cloud data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 169-176.

    [33] [33] LIANGX L, HYYPPÄJ, KAARTINENH, et al. International benchmarking of terrestrial laser scanning approaches for forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,144:137-179. DOI:10.1016/j.isprs-jprs.2018.06.021

    [34] [34] KHOSRAVIPOURA, SKIDMOREA K, WANGT J, et al. Effect of slope on treetop detection using a LiDAR Canopy Height Model[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2015,104:44-52. DOI:10.1016/j.isprsjprs. 2015.02.013

    [35] [35] ZHANGHaiqing, LIXiangxin, WANGCheng, et al. Individual tree height extraction from airborne LiDAR data by combining with DSM[J]. Journal of Geo-Information Science, 2021, 23(10): 1873-1881.

    [36] [36] HUOLangning, ZHANGXiaoli. Individual tree information extraction and accuracy evaluation based on airborne LiDAR point cloud by multilayer clustering method[J]. Scientia Silvae Sinicae, 2021, 57(1): 85-94.

    [37] [37] LEIL T, CHAIG Q, WANGY T, et al. Estimating individual tree above-ground biomass of Chinese fir plantation: Exploring the combination of multi-dimensional features from UAV oblique photos[J]. Remote Sensing, 2022, 14(3): 504. DOI: 10.3390/rs14030504

    [38] [38] ZHOUX M, ZHANGX L. Individual tree parameters estimation for plantation forests based on UAV oblique photography[J]. IEEE Access, 2020, 8: 96184-96198.

    [39] [39] ZENGJian, ZHANGXiaoli, ZHOUXuemei, et al. Extraction of topographic information of larch plantation by oblique photogrammetry[J]. Journal of Beijing Forestry University, 2019, 41(8): 1-12.

    [40] [40] LIANGX L, KUKKOA, BALENOVIĆI, et al. Close-range remote sensing of forests: The state of the art, challenges, and opportunities for systems and data acquisitions[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(3): 32-71. DOI: 10.1109/MGRS.2022.3168135

    [41] [41] ANDERSONC T, DIETZS L, POKSWINSKIS M, et al. Traditional field metrics and terrestrial LiDAR predict plant richness in southern pine forests[J]. Forest Ecology and Management,2021,491:119118. DOI:10.1016/j.foreco. 2021. 119118

    [42] [42] OLOFSSONK, HOLMGRENJ. Single tree stem profile detection using terrestrial laser scanner data, flatness saliency features and curvature properties[J]. Forests, 2016, 7(9): 207. DOI: 10.3390/f7090207

    [43] [43] HEINZELJ, HUBERM O. Detecting tree stems from volumetric TLS data in forest environments with rich understory[J]. Remote Sensing,2017,9(1):9. DOI:10.3390/rs9010009

    [44] [44] GOLLOBC, RITTERT, WASSERMANNC, et al. Influence of scanner position and plot size on the accuracy of tree detection and diameter estimation using terrestrial laser scanning on forest inventory plots[J]. Remote Sensing, 2019, 11(13): 1602. DOI: 10.3390/rs11131602

    [45] [45] MOKROŠM,MIKITAT,SINGHA, et al. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives[J].International Journal of Applied Earth Observation and Geoinformation,2021,104:102512. DOI: 10.1016/j.jag.2021.102512

    [46] [46] FANY X, FENGZ K, SHENC Y, et al. A trunk-based SLAM backend for smartphones with online SLAM in large-scale forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 41-49. DOI: 10.1016/j.isprsjprs.2020.02.006

    [47] [47] FOLC R,KÜKENBRINKD,REHUSHN,et al. Evaluating state-of-the-art 3D scanning methods for stem-level biodiversity inventories in forests[J]. International Journal of Applied Earth Observation and Geoinformation,2023,122:103396. DOI: 10.1016/j.jag.2023.103396

    [48] [48] HYYPPÄE, YUX W, KAARTINENH, et al. Comparison of backpack, handheld, under-canopy UAV, and above-canopy UAV laser scanning for field reference data collection in boreal forests[J]. Remote Sensing, 2020, 12(20): 3327. DOI: 10.3390/rs12203327

    [49] [49] KÜKENBRINKD, MARTYM, BÖSCHR, et al. Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest[J].International Journal of Applied Earth Observation and Geoinformation,2022,113:102999.DOI:10.1016/j.jag.2022. 102999

    [50] [50] LIJ P, YANGB S, YANGY D, et al. Real-time automated forest field inventory using a compact low-cost helmet-based laser scanning system[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103299. DOI: 10.1016/j.jag.2023.103299

    [51] [51] JIANGT P, LIUS, ZHANGQ Y, et al. Segmentation of individual trees in urban MLS point clouds using a deep learning framework based on cylindrical convolution network[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 123: 103473. DOI: 10.1016/j.jag.2023.103473

    [52] [52] PROUDMANA, RAMEZANIM, DIGUMARTIS T, et al. Towards real-time forest inventory using handheld LiDAR[J]. Robotics and Autonomous Systems, 2022, 157: 104240. DOI: 10.1016/j.robot.2022.104240

    [53] [53] VATANDAŞLARC, SEKIM, ZEYBEKM. Assessing the potential of mobile laser scanning for stand-level forest inventories in near-natural forestsFree[J]. Forestry: an International Journal of Forest Research, 2023, 96(4): 448-464. DOI: 10.1093/forestry/cpad016

    [54] [54] MIKITAT, JANATAP, SUROVÝP. Forest stand inventory based on combined aerial and terrestrial close-range photogrammetry[J]. Forests, 2016, 7(8): 165. DOI: 10.3390/f7080165

    [55] [55] ZHUR N, GUOZ Q, ZHANGX L. Forest 3D reconstruction and individual tree parameter extraction combining close-range photo enhancement and feature matching[J]. Remote Sensing, 2021, 13(9): 1633. DOI: 10.3390/rs13091633

    [56] [56] SUROVÝP, YOSHIMOTOA, PANAGIOTIDISD. Accuracy of reconstruction of the tree stem surface using terrestrial close-range photogrammetry[J]. Remote Sensing, 2016, 8(2): 123. DOI: 10.3390/rs8020123

    [57] [57] YANX H, CHAIG Q, HANX Y, et al. SA-pmnet: Utilizing close-range photogrammetry combined with image enhancement and self-attention mechanisms for 3D reconstruction of forests[J]. Remote Sensing, 2024, 16(2): 416. DOI: 10.3390/rs16020416

    [58] [58] RENY, LIC, CHAUK, et al. Conserving the primary forests in the Yarlung Tsangpo Grand Canyon for people and nature[J]. Nature Ecology & Evolution, 2024, 8(5): 837-839. DOI: 10.1038/s41559-024-02383-y

    [59] [59] ASNERG P, MASCAROJ. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric[J]. Remote Sensing of Environment, 2014, 140: 614-624. DOI: 10.1016/j.rse.2013.09.023

    [60] [60] LIANGX L, QIH W, DENGX J, et al. ForestSemantic: A dataset for semantic learning of forest from close-range sensing[J]. Geo-spatial Information Science,2025,28(1):185-211. DOI: 10.1080/10095020.2024.2313325

    [61] [61] WANGL, GONGP, BIGINGG S. Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(3): 351-357. DOI: 10.14358/pers.70.3.351

    [62] [62] ENE L, NÆSSETE, GOBAKKENT. Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates[J]. International Journal of Remote Sensing,2012,33(16):5171-5193. DOI:10. 1080/01431161.2012.657363

    [63] [63] GOUGEONF A. A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images[J]. Canadian Journal of Remote Sensing, 1995,21(3):274-284. DOI:10.1080/07038992. 1995. 10874622

    [64] [64] KOCHB, HEYDERU, WEINACKERH. Detection of individual tree crowns in airborne lidar data[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(4): 357-363. DOI: 10.14358/pers.72.4.357

    [65] [65] LIUQ, JINGL, LIY, et al. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition[J]. IOP Conference Series: Earth and Environmental Science,2016,34(1):012020. DOI:10.1088/1755-1315/34/1/012020

    [66] [66] HUOL N, LINDBERGE. Individual tree detection using template matching of multiple rasters derived from multispectral airborne laser scanning data[J]. International Journal of Remote Sensing, 2020, 41(24): 9525-9544. DOI: 10.1080/01431161.2020.1800127

    [67] [67] CHENX, SHENX J, ZHANGX Z, et al. Polygenic associations and causal inferences between serum immunoglobulins and amyotrophic lateral sclerosis[J]. Clinica Chimica Acta, 2021, 521: 131-136. DOI: 10.1016/j.cca.2021.07.007

    [68] [68] YUNT, LIJ, MAL F, et al. Status, advancements and prospects of deep learning methods applied in forest studies[J]. International Journal of Applied Earth Observation and Geoinformation,2024,131:103938. DOI:10.1016/j.jag. 2024.103938

    [69] [69] LINDBERGE, HOLMGRENJ, OLOFSSONK, et al. Estimation of tree lists from airborne laser scanning using tree model clustering and k-MSN imputation[J]. Remote Sensing, 2013, 5(4): 1932-1955. DOI: 10.3390/rs5041932

    [70] [70] HUX B,CHENW,XUW Y.Adaptive mean shift-based identification of individual trees using airborne LiDAR data[J]. Remote Sensing,2017,9(2):148. DOI:10.3390/rs 9020148

    [71] [71] WANGY S, WEINACKERH, KOCHB. A lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest[J]. Sensors, 2008, 8(6): 3938-3951. DOI: 10.3390/s8063938

    [72] [72] WANGC X,JIM,WANGJ,et al.An improved DBSCAN me-thod for LiDAR data segmentation with automatic eps estimation[J].Sensors,2019,19(1):172. DOI:10.3390/s19010172

    [73] [73] SHENDRYKI, BROICHM, TULBUREM G, et al. Bottom-up delineation of individual trees from full-waveform airborne laser scans in a structurally complex eucalypt forest[J]. Remote Sensing of Environment, 2016, 173: 69-83. DOI: 10.1016/j.rse.2015.11.008

    [74] [74] KAARTINENH, HYYPPÄJ, YUX W, et al. An international comparison of individual tree detection and extraction using airborne laser scanning[J]. Remote Sensing, 2012, 4(4): 950-974. DOI: 10.3390/rs4040950

    [75] [75] WALLACEL, LUCIEERA, MALENOVSKÝZ, et al. Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and Structure from Motion (SfM) point clouds[J]. Forests, 2016, 7(3): 62. DOI: 10.3390/f7030062

    [76] [76] LIANGX L, KANKAREV, HYYPPÄJ, et al. Terrestrial laser scanning in forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 63-77. DOI: 10.1016/j.isprsjprs.2016.01.006

    [77] [77] ZHONGL S, CHENGL, XUH, et al. Segmentation of individual trees from TLS and MLS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(2):774-787. DOI:10.1109/JSTARS. 2016.2565519

    [78] [78] BURTA, DISNEYM, CALDERSK. Extracting individual trees from Lidar point clouds using treeseg[J]. Methods in Ecology and Evolution,2019,10(3):438-445. DOI:10.1111/2041-210X.13121

    [79] [79] LUOH F, KHOSHELHAMK, CHENC C, et al. Individual tree extraction from urban mobile laser scanning point clouds using deep pointwise direction embedding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 326-339. DOI: 10.1016/j.isprsjprs.2021.03.002

    [80] [80] CHIAPPINIS, PIERDICCAR, MALANDRAF, et al. Comparing Mobile Laser Scanner and manual measurements for dendrometric variables estimation in a black pine (Pinus nigra Arn.) plantation[J]. Computers and Electronics in Agriculture,2022,198:107069. DOI:10.1016/j.compag. 2022. 107069

    [81] [81] GOLLOBC, RITTERT, NOTHDURFTA. Forest inventory with long range and high-speed Personal Laser Scanning (PLS) and Simultaneous Localization And Mapping(SLAM) technology[J]. Remote Sensing, 2020, 12(9): 1509. DOI: 10.3390/rs12091509

    [82] [82] KUŽELKAK, MARUŠÁKR, SUROVÝP. Inventory of close-to-nature forest stands using terrestrial mobile laser scanning[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 115: 103104. DOI: 10.1016/j.jag.2022.103104

    [83] [83] CHEY P, WANGQ, XIEZ W, et al. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography Free[J]. Annals of Botany, 2020, 126(4): 765-773. DOI: 10.1093/aob/mcaa097

    [84] [84] LIUQingwang, LIShiming, LIZengyuan, et al. Review on the applications of UAV-based LiDAR and photogrammetry in forestry[J].Scientia Silvae Sinicae,2017,53(7):134-148.

    [85] [85] DUYihong, YINTian, ZHOUXuemei, et al. Extraction of individual tree parameters of Chinese pine by oblique photogrammetry[J]. Journal of Beijing Forestry University, 2021, 43(4): 77-86.

    [86] [86] LEIL T, CHAIG Q, YAOZ Q, et al. A novel self-similarity cluster grouping approach for individual tree crown segmentation using multi-features from UAV-based LiDAR and multi-angle photogrammetry data[J]. Remote Sensing of Environment,2025,318:114588. DOI:10.1016/j.rse. 2024. 114588

    [87] [87] MILLERJ, MORGENROTHJ, GOMEZC. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates[J]. Urban Forestry & Urban Greening,2015,14(4):932-940. DOI:10.1016/j.ufug. 2015.09.001

    [88] [88] LIUJ C, FENGZ K, YANGL Y, et al. Extraction of sample plot parameters from 3D point cloud reconstruction based on combined RTK and CCD continuous photography[J]. Remote Sensing,2018,10(8):1299. DOI:10.3390/rs10081299

    [89] [89] LIANGX L, JAAKKOLAA, WANGY S, et al. The use of a hand-held camera for individual tree 3D mapping in forest sample plots[J]. Remote Sensing, 2014, 6(7): 6587-6603. DOI: 10.3390/rs6076587

    [90] [90] LIY X, WANGP, SUNJ Q, et al. Simulation of tree point cloud based on the ray-tracing algorithm and three-dimensional tree model[J]. Biosystems Engineering, 2020, 200: 259-271. DOI: 10.1016/j.biosystemseng.2020.10.007

    [91] [91] YUNT, CAOL, ANF, et al. Simulation of multi-platform LiDAR for assessing total leaf area in tree crowns[J]. Agricultural and Forest Meteorology,2019,276:107610. DOI:10. 1016/j.agrformet.2019.06.009

    [92] [92] LIW K, HUX M, SUY J, et al. A new method for voxel-based modelling of three-dimensional forest scenes with integration of terrestrial and airborne LiDAR data[J]. Methods in Ecology and Evolution,2024,15(3):569-582. DOI:10.1111/2041-210X.14290

    [93] [93] WESTLINGF, BRYSONM, UNDERWOODJ. SimTreeLS: Simulating aerial and terrestrial laser scans of trees[J]. Computers and Electronics in Agriculture, 2021, 187: 106277. DOI: 10.1016/j.compag.2021.106277

    [94] [94] BAZEZEWM N, HUSSINY A, KLOOSTERMANE H. Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 638-652. DOI: 10.1016/j.jag.2018.07.026

    [95] [95] FEKRYR, YAOW, CAOL, et al. Ground-based/UAV-LiDAR data fusion for quantitative structure modeling and tree parameter retrieval in subtropical planted forest[J]. Forest Ecosystems,2022,9:100065. DOI:10.1016/j.fecs. 2022. 100065

    [96] [96] CHENC, WANGH D, WANGD C, et al. Towards the digital twin of urban forest: 3D modeling and parameterization of large-scale urban trees from close-range laser scanning[J]. International Journal of Applied Earth Observation and Geoinformation,2024,127:103695. DOI:10.1016/j.jag. 2024. 103695

    [97] [97] YANGY Q, HUANGS. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research,2018,137(2):153-167. DOI: 10.1007/s10342-017-1095-7

    Tools

    Get Citation

    Copy Citation Text

    Guoqi CHAI, Yanchen YANG, Lei WANG, Yong MA, Xin TIAN. Brief Review on the Progress in Fine-scale Acquisition of Forest Parameters based on Near-ground Remote Sensing[J]. Remote Sensing Technology and Application, 2025, 40(4): 1015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 10, 2025

    Accepted: --

    Published Online: Aug. 26, 2025

    The Author Email: Xin TIAN (tianxin@caf.ac.cn)

    DOI:10.11873/j.issn.1004-0323.2025.4.1015

    Topics